Course Description
Overview
Modeling is the process of formalizing ideas about how a system works, learning about its dynamics, and making predictions about the future. Modern public health research and practice can utilize models to better understand and manage dynamic processes - from optimal decision-making in healthcare delivery and design of clinical trials, to prediction and control of infectious disease outbreaks, to mitigating the effects of drug overdoses.
Today’s public health analysts and decision-makers need to understand how such models are developed, what their strengths and weaknesses are, and how to interpret their output.
To better prepare the community of public health researchers and practitioners to meet the world’s most significant challenges in epidemiology and health policy, the Yale School of Public Health is offering a five-day course in Public Health Modeling. This course provides hands-on training in developing, understanding, and interpreting models. Course instructors are Yale faculty experts in epidemiology, biostatistics, health policy and health care operations, and public policy.
Intended Audience
Prerequisites
Learning Objectives
Upon completion of the course, students will be able to:
- Formalize hypotheses and intuition about health system dynamics into coherent mathematical models
- Construct models of systems and processes in epidemiology, health economics/policy, and biomedical science
- Implement models in the R programming language
- Calibrate models using rigorous tools from statistical inference
- Generate predictions from models