2015
Sodalis
Dale C, Aksoy S, Welburn S, Maudlin I, Oren A. Sodalis. 2015, 1-3. DOI: 10.1002/9781118960608.gbm01169.Peer-Reviewed Original Research
2007
Novel strategies targeting pathogen transmission reduction in insect vectors: Tsetse‐transmitted trypanosomiasis control
WEISS B, ATTARDO G, Roshan P, Jingwen W, AKSOY S. Novel strategies targeting pathogen transmission reduction in insect vectors: Tsetse‐transmitted trypanosomiasis control. Entomological Research 2007, 37: 231-237. DOI: 10.1111/j.1748-5967.2007.00119.x.Peer-Reviewed Original ResearchInsect vectorsEffective disease management strategiesNovel disease control strategiesDisease management strategiesInsect-pathogen interactionsDisease control strategiesPopulation reduction methodsAgricultural diseasesTransgenic technologyTrypanosomiasis controlImportant human diseasesInsect biologyManagement strategiesTsetse vectorVector populationsAfrican trypanosomesControl strategyHuman diseasesDisease controlInsectsRecent knowledgeVector control strategiesBiologyCropsSelective eliminationReplication of Flock House Virus in Three Genera of Medically Important Insects
Dasgupta R, Free H, Zietlow S, Paskewitz S, Aksoy S, Shi L, Fuchs J, Hu C, Christensen B. Replication of Flock House Virus in Three Genera of Medically Important Insects. Journal Of Medical Entomology 2007, 51 DOI: 10.1603/0022-2585(2007)44[102:rofhvi]2.0.co;2.Peer-Reviewed Original ResearchFlock House virusImportant insectsHost rangeInsect host rangeOrders of insectsGrass grub Costelytra zealandicaPlus-sense RNAGenera of mosquitoesGreen fluorescent proteinMalaria vector AnophelesVirus growth rateVirus-host interactionsRhodnius prolixus StalPlaque-forming unitsInsectsFluorescent proteinHost interactionsCostelytra zealandicaLow doseVector AnophelesLower mortalityCulex pipiens pipiens L.Major tissuesTsetse fliesAdverse effectsReplication of Flock House Virus in Three Genera of Medically Important Insects
Dasgupta R, Free H, Zietlow S, Paskewitz S, Aksoy S, Shi L, Fuchs J, Hu C, Christensen B. Replication of Flock House Virus in Three Genera of Medically Important Insects. Journal Of Medical Entomology 2007, 44: 102-110. DOI: 10.1603/0022-2585%282007%2944%5b102%3arofhvi%5d2.0.co%3b2.Peer-Reviewed Original ResearchFlock House virusImportant insectsHost rangeInsect host rangeOrders of insectsGrass grub Costelytra zealandicaPlus-sense RNAGenera of mosquitoesGreen fluorescent proteinMalaria vector AnophelesVirus growth rateVirus-host interactionsRhodnius prolixus StalPlaque-forming unitsInsectsFluorescent proteinHost interactionsCostelytra zealandicaLow doseVector AnophelesLower mortalityCulex pipiens pipiens L.Major tissuesTsetse fliesAdverse effects
2002
Tsetse Vector Based Strategies for Control of African Try Panosomiasis
Aksoy S. Tsetse Vector Based Strategies for Control of African Try Panosomiasis. 2002, 1: 39-49. DOI: 10.1007/0-306-46894-8_4.Peer-Reviewed Original ResearchMolecular genetic approachesBacterial symbiontsRecombinant DNA technologySymbiotic bacteriaCytoplasmic incompatibilityWolbachia symbiontsPotential genesGenetic approachesParasite biologyForeign genesSusceptible counterpartsDNA technologySymbiontsGenesSame tissueInsectsDisease transmissionOrganismsBiologyTrypanosomesBacteriaExpressionNew strategyTsetse
2001
Prospects for control of African trypanosomiasis by tsetse vector manipulation
Aksoy S, O'Neill S, Maudlin I, Dale C, Robinson A. Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends In Parasitology 2001, 17: 29-35. PMID: 11137738, DOI: 10.1016/s1471-4922(00)01850-x.Peer-Reviewed Original ResearchConceptsArea-wide approachHuman disease managementLivestock ownersAnimal diseasesAgricultural outputMolecular genetic approachesImportant insectsInfected hostDisease managementEconomic incentivesTsetse populationsVector manipulationGenetic approachesMammalian hostsVector competenceEffective vaccineDiseases reliesHostTrypanosomiasisControl strategyInsectsAfrican trypanosomiasisTsetseLong runControl
1997
Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria
Durvasula R, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield R, Richards F, Beard C. Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 3274-3278. PMID: 9096383, PMCID: PMC20359, DOI: 10.1073/pnas.94.7.3274.Peer-Reviewed Original ResearchConceptsSymbiotic bacteriaDisease-transmitting insectsChagas disease vectorsSymbiont acquisitionTransgenic bacteriaInsect-borne diseaseR. prolixusDisease vectorsCertain arthropodsRhodnius prolixusT. cruziTrypanosoma cruziCecropin AExpression of moleculesInsectsBacteriaPowerful approachProlixusCruziExpressionEndosymbiontsArthropodsCecropinAntiparasitic activityParasitesGenetic manipulation of insect symbionts
Beard C, Aksoy S. Genetic manipulation of insect symbionts. 1997, 555-560. DOI: 10.1007/978-94-009-1535-0_45.Peer-Reviewed Original Research
1993
Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues
O'NEILL S, GOODING R, AKSOY S. Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Medical And Veterinary Entomology 1993, 7: 377-383. PMID: 8268495, DOI: 10.1111/j.1365-2915.1993.tb00709.x.Peer-Reviewed Original ResearchConceptsIntracellular bacterial symbiontsBlood-feeding insectsDNA oligonucleotide primersBacterial symbiontsSymbiotic microorganismsAlpha subdivisionSymbiotic bacteriaGamma subdivisionGenus WolbachiaGlossina speciesPolymerase chain reactionOvary tissuesOligonucleotide primersTsetse fliesMidgutSpeciesSymbiontsInsectsWolbachiaProteobacteriaSubspeciesChain reactionFliesMicroorganismsTissue