Leying Guan
Associate Professor of BiostatisticsDownloadHi-Res Photo
Cards
Contact Info
About
Copy Link
Titles
Associate Professor of Biostatistics
Biography
Leying Guan is an Assistant Professor of Biostatistics at Yale University. She received her Ph.D from the Statistics department at Stanford in 2019. Her research primarily focuses on high dimensional statsitics, robust statistical learning, statistical inference and developing statistical and machine learning methods driven by scientific applications including genetics, immunology, and computational neuroscience.
Last Updated on April 07, 2025.
Appointments
Biostatistics
Associate Professor on TermPrimary
Other Departments & Organizations
Research
Copy Link
Overview
High-dimensional Statistics; Statistical Inference; Outlier Detection; Machine Learning and Data Science; Statistical Genetics; Computational Neuroscience; Statistical Analysis of Immune Signatures in Human infection.
Medical Research Interests
Computational Biology; Epigenomics; Gene Regulatory Networks; Genetics; Immune System Diseases; Machine Learning; Neurosciences; Statistics
ORCID
0000-0003-0609-1073
Research at a Glance
Yale Co-Authors
Frequent collaborators of Leying Guan's published research.
Publications Timeline
A big-picture view of Leying Guan's research output by year.
Research Interests
Research topics Leying Guan is interested in exploring.
Steven Kleinstein, PhD
Ruth R Montgomery, PhD
David A. Hafler, MD, FANA
Akiko Iwasaki, PhD
Albert C Shaw, MD, PhD
Bornali Bhattacharjee
39Publications
1,092Citations
Computational Biology
Machine Learning
Publications
2025
Minimalistic transcriptomic signatures permit accurate early prediction of COVID-19 mortality
Narendra R, Lydon E, Van Phan H, Spottiswoode N, Neyton L, Diray-Arce J, Network I, Consortium C, Consortium E, Becker P, Kim-Schulze S, Hoch A, Pickering H, van Zalm P, Cairns C, Altman M, Augustine A, Bosinger S, Eckalbar W, Guan L, Jayavelu N, Kleinstein S, Krammer F, Maecker H, Ozonoff A, Peters B, Rouphael N, Montgomery R, Reed E, Schaenman J, Steen H, Levy O, Haller S, Erle D, Hendrickson C, Krummel M, Matthay M, Woodruff P, Haddad E, Calfee C, Langelier C. Minimalistic transcriptomic signatures permit accurate early prediction of COVID-19 mortality. JCI Insight 2025, 10: e195436. PMID: 41212055, PMCID: PMC12643502, DOI: 10.1172/jci.insight.195436.Peer-Reviewed Original ResearchAltmetricMeSH Keywords and ConceptsConceptsPeripheral blood mononuclear cellsArea under the receiver operating characteristic curveSARS-CoV-2 viral loadCOVID-19 cohortViral loadViral infection pathogenesisNasal swabsNational Institute of Allergy and Infectious DiseasesSARS-CoV-2Transcriptomic signaturesBlood mononuclear cellsReceiver operating characteristic curveHost gene expressionOperating characteristics curvePeripheral bloodPrognostic classifierContemporary cohortGene expressionPrognostic assaysImmunophenotypic assessmentMononuclear cellsFatal outcomePrognostic toolInfection pathogenesisNational InstituteA multi-omics recovery factor predicts long COVID in the IMPACC study
Gabernet G, Maciuch J, Gygi J, Moore J, Hoch A, Syphurs C, Chu T, Jayavelu N, Corry D, Kheradmand F, Baden L, Sekaly R, McComsey G, Haddad E, Cairns C, Rouphael N, Fernandez-Sesma A, Simon V, Metcalf J, Higuita N, Hough C, Messer W, Davis M, Nadeau K, Pulendran B, Kraft M, Bime C, Reed E, Schaenman J, Erle D, Calfee C, Atkinson M, Brakenridge S, Melamed E, Shaw A, Hafler D, Augustine A, Becker P, Ozonoff A, Bosinger S, Eckalbar W, Maecker H, Kim-Schulze S, Steen H, Krammer F, Westendorf K, Network I, Peters B, Fourati S, Altman M, Levy O, Smolen K, Montgomery R, Diray-Arce J, Kleinstein S, Guan L, Ehrlich L. A multi-omics recovery factor predicts long COVID in the IMPACC study. Journal Of Clinical Investigation 2025, 135: e193698. PMID: 40924481, PMCID: PMC12582403, DOI: 10.1172/jci193698.Peer-Reviewed Original ResearchAltmetricConceptsSARS-CoV-2 infectionCOVID-19 patientsMulti-OmicsSARS-CoV-2Risk of LCAcute COVID-19 severityImmune profiling dataSubset frequenciesBiomarkers of LCPlasma metabolomeCOVID-19 severityPotential treatment targetPBMC transcriptomesClinical parametersBiological underpinningsStress erythropoiesisCell frequencyInflammatory mediatorsLC biomarkersTherapeutic opportunitiesHospital dischargeAndrogenic steroidsDisease severityTreatment targetPatientsBaseline predictors for 28-day COVID-19 severity and mortality among hospitalized patients: results from the IMPACC study
Hou J, Haslund-Gourley B, Diray-Arce J, Hoch A, Rouphael N, Becker P, Augustine A, Ozonoff A, Guan L, Kleinstein S, Peters B, Reed E, Altman M, Langelier C, Maecker H, Kim S, Montgomery R, Krammer F, Wilson M, Eckalbar W, Bosinger S, Levy O, Steen H, Rosen L, Baden L, Melamed E, Ehrlich L, McComsey G, Sekaly R, Schaenman J, Shaw A, Hafler D, Corry D, Kheradmand F, Atkinson M, Brakenridge S, Agudelo Higuita N, Metcalf J, Hough C, Messer W, Pulendran B, Nadeau K, Davis M, Fernandez Sesma A, Simon V, Kraft M, Bime C, Calfee C, Erle D, Impacc Network, Robinson L, Cairns C, Haddad E, Comunale M. Baseline predictors for 28-day COVID-19 severity and mortality among hospitalized patients: results from the IMPACC study. Frontiers In Medicine 2025, 12: 1604388. PMID: 40687705, PMCID: PMC12271175, DOI: 10.3389/fmed.2025.1604388.Peer-Reviewed Original ResearchAltmetricConceptsSequential Organ Failure AssessmentPeripheral blood mononuclear cellsLaboratory biomarkersSequential Organ Failure Assessment scoreAntibody titersNasal viral loadOrgan Failure AssessmentBlood mononuclear cellsSARS-CoV-2 antibody titersSARS-CoV-2 infectionCOVID-19 patientsCOVID-19 cohortMortality prediction modelCOVID-19 severityPatient ageViral loadBlood cytometryImmunophenotypic assessmentMononuclear cellsClinical dataBaseline biomarkersFailure AssessmentBiomarkers of COVID-19Hospitalized patientsIL-6Type 2 immune responses are associated with less severe COVID-19 in a hospitalized cohort
Jayavelu N, Qi J, Milliren C, Ozonoff A, Liu S, Levy O, Baden L, Melamed E, McComsey G, Cairns C, Schaenman J, Shaw A, Hafler D, Corry D, Kheradmand F, Atkinson M, Brakenridge S, Higuita N, Metcalf J, Hough C, Messer W, Pulendran B, Nadeau K, Davis M, Geng L, Sesma A, Simon V, Krammer F, Bime C, Calfee C, Bosinger S, Eckalbar W, Steen H, Maecker H, Becker P, Augustine A, Holland S, Rosen L, Lee S, Vaysman T, Ozonoff A, Diray-Arce J, Chen J, Kho A, Milliren C, Hoch A, Chang A, McEnaney K, Barton B, Lentucci C, Murphy M, Saluvan M, Shaheen T, Liu S, Syphurs C, Albert M, Hayati A, Bryant R, Abraham J, Thomas S, Cooney M, Karoly M, Altman M, Jayavelu N, Presnell S, Kohr B, Jancsyk T, Arnett A, Peters B, Overton J, Vita R, Westendorf K, Overton J, Levy O, Steen H, van Zalm P, Fatou B, Smolen K, Viode A, van Haren S, Jha M, Stevenson D, Odumade O, Baden L, Mendez K, Lasky-Su J, Tong A, Rooks R, Desjardins M, Sherman A, Walsh S, Mitre X, Cauley J, Li X, Evans B, Montesano C, Licona J, Krauss J, Issa N, Chang J, Izaguirre N, Hutton S, Michelotti G, Wong K, Tebbutt S, Shannon C, Sekaly R, Fourati S, McComsey G, Harris P, Sieg S, Ribeiro S, Cairns C, Haddad E, Kutzler M, Bernui M, Cusimano G, Connors J, Woloszczuk K, Joyner D, Edwards C, Lee E, Lin E, Melnyk N, Powell D, Kim J, Goonewardene I, Simmons B, Smith C, Martens M, Croen B, Semenza N, Bell M, Furukawa S, McLin R, Tegos G, Rogowski B, Mege N, Ulring K, Schearer P, Sheidy J, Nagle C, Seyfert-Margolis V, Rouphael N, Bosinger S, Boddapati A, Tharp G, Pellegrini K, Johnson B, Panganiban B, Huerta C, Anderson E, Samaha H, Sevransky J, Bristow L, Beagle E, Cowan D, Hamilton S, Hodder T, Bechnak A, Cheng A, Mehta A, Ciric C, Spainhour C, Carter E, Scherer E, Usher J, Hellmeister K, Hussaini L, Hewitt L, Mcnair N, Ribeiro S, Wimalasena S, Fernandez-Sesma A, Simon V, Krammer F, Van Bakel H, Kim-Schulze S, Reiche A, Qi J, Lee B, Carreño J, Singh G, Raskin A, Tcheou J, Khalil Z, van de Guchte A, Farrugia K, Khan Z, Kelly G, Srivastava K, Eaker L, Bermúdez-González M, Mulder L, Beach K, Saksena M, Altman D, Kojic E, Sominsky L, Azad A, Bielak D, Kawabata H, Yellin T, Fried M, Sullivan L, Morris S, Kleiner G, Stadlbauer D, Dutta J, Xie H, Patel M, Nie K, Rahman A, Messer W, Hough C, Siegel S, Sullivan P, Lu Z, Brunton A, Strand M, Lyski Z, Coulter F, Micheleti C, Maecker H, Pulendran B, Nadeau K, Rosenberg-Hasson Y, Leipold M, Sigal N, Rogers A, Fernandes A, Manohar M, Do E, Chang I, Lee A, Blish C, Din H, Roque J, Geng L, Artandi M, Davis M, Ahuja N, Yang S, Chinthrajah S, Hagan T, Reed E, Schaenman J, Salehi-Rad R, Rivera A, Pickering H, Sen S, Elashoff D, Ward D, Brook J, Sanchez E, Llamas M, Perdomo C, Magyar C, Fulcher J, Erle D, Calfee C, Hendrickson C, Kangelaris K, Nguyen V, Lee D, Chak S, Ghale R, Gonzalez A, Jauregui A, Leroux C, Altamirano L, Rashid A, Willmore A, Woodruff P, Krummel M, Carrillo S, Ward A, Langelier C, Patel R, Wilson M, Dandekar R, Alvarenga B, Rajan J, Eckalbar W, Schroeder A, Fragiadakis G, Tsitsiklis A, Mick E, Guerrero Y, Love C, Maliskova L, Adkisson M, Leligdowicz A, Beagle A, Rao A, Sigman A, Samad B, Curiel C, Shaw C, Tietje-Ulrich G, Milush J, Singer J, Vasquez J, Tang K, Betancourt L, Santhosh L, Pierce L, Paz M, Matthay M, Thakur N, Rodriguez N, Sutter N, Jones N, Sinha P, Prasad P, Lota R, Rashid S, Asthana S, Bhide S, Lea T, Abe-Jones Y, Hafler D, Montgomery R, Shaw A, Kleinstein S, Gygi J, Pawar S, Konstorum A, Chen E, Cotsapas C, Wang X, Xu L, Dela Cruz C, Iwasaki A, Mohanty S, Nelson A, Zhao Y, Farhadian S, Asashima H, Chaudhary O, Coppi A, Fournier J, Muenker M, Nelson A, Raddassi K, Rainone M, Ruff W, Salahuddin S, Shulz W, Vijayakumar P, Wang H, Wunder E, Young H, Ko A, Wang X, Duchen D, Esserman D, Guan L, Brito A, Rothman J, Grubaugh N, Corry D, Kheradmand F, Song L, Nelson E, Metcalf J, Higuita N, Sinko L, Booth J, Drevets D, Brown B, Kraft M, Bime C, Mosier J, Erickson H, Schunk R, Kimura H, Conway M, Francisco D, Molzahn A, Wilson C, Schunk R, Hughes T, Sierra B, Atkinson M, Brakenridge S, Ungaro R, Manning B, Moldawer L, Oberhaus J, Guirgis F, Borresen B, Anderson M, Ehrlich L, Melamed E, Maguire C, Wylie D, Rousseau J, Hurley K, Geltman J, Siles N, Rogers J, Augustine A, Diray-Arce J, Haddad E, Sekaly R, Kraft M, Woodruff P, Erle D, Ehrlich L, Montgomery R, Becker P, Altman M, Fourati S. Type 2 immune responses are associated with less severe COVID-19 in a hospitalized cohort. Journal Of Allergy And Clinical Immunology Global 2025, 4: 100515. PMID: 40709330, PMCID: PMC12284355, DOI: 10.1016/j.jacig.2025.100515.Peer-Reviewed Original ResearchCitationsConceptsT2 immune responseClinical outcomesVirus loadImmune responseSARS-CoV-2Primary siteSusceptibility to respiratory viral infectionsType 2 immune responsesAntibody titersCellular markersPrimary site of infectionSeverity of respiratory illnessRespiratory viral infectionsIL-13 levelsDegree of respiratory supportAssociated with less severe COVID-19Site of infectionLow virus loadSevere COVID-19Effects of SARS-CoV-2Severe coronavirus diseaseDiagnosis of asthmaRespiratory supportCoronavirus severe acute respiratory syndrome coronavirus 2Blood cytometryFTO inhibition enhances the therapeutic index of radiation therapy in head and neck cancer
Ji L, Pu L, Wang J, Cao H, Melemenidis S, Sinha S, Guan L, Laseinde E, von Eyben R, Richter S, Nam J, Kong C, Casey K, Graves E, Frock R, Le Q, Rankin E. FTO inhibition enhances the therapeutic index of radiation therapy in head and neck cancer. JCI Insight 2025, 10: e184968. PMID: 40485587, PMCID: PMC12220955, DOI: 10.1172/jci.insight.184968.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsTherapeutic index of radiation therapyHPV- head and neck squamous cell carcinomaRadiation therapyTherapeutic indexRT responseHead and neck squamous cell carcinomaRadiation-induced oral mucositisNeck squamous cell carcinomaPharmacological inhibitionHead and neck cancerDrug-radiotherapy combinationsOverall survival rateEfficacy of RTSquamous cell carcinomaTherapeutic targetObesity-related genesAssociated with increased DNA damageChemoradiation treatmentOral mucositisCell carcinomaHNSCC treatmentHNSCC cellsNeck cancerPotential therapeutic targetCancer therapeutic targetCerebrospinal fluid immune phenotyping reveals distinct immunotypes of myalgic encephalomyelitis/chronic fatigue syndrome
Bastos V, Greene K, Tabachnikova A, Bhattacharjee B, Sjögren P, Bertilson B, Reifert J, Zhang M, Kamath K, Shon J, Gehlhausen J, Guan L, VanElzakker M, Proal A, Bragée B, Iwasaki A. Cerebrospinal fluid immune phenotyping reveals distinct immunotypes of myalgic encephalomyelitis/chronic fatigue syndrome. The Journal Of Immunology 2025, 214: 1539-1551. PMID: 40373264, PMCID: PMC12311384, DOI: 10.1093/jimmun/vkaf087.Peer-Reviewed Original ResearchCitationsAltmetricConceptsMyalgic encephalomyelitis/chronic fatigue syndromeCerebrospinal fluidImmune phenotypeFatigue syndromeMatched healthy control subjectsAssessed plasma samplesMultiplex analysis of cytokinesHealthy control subjectsAnalysis of cerebrospinal fluidAnalysis of cytokinesTreatment developmentClinical presentationSymptom presentationMultiorgan diseaseInflammatory profileControl subjectsPathophysiological mechanismsMatrix metalloproteinase profilesDisease subgroupsME/CFS participantsClinical questionnaireMatrix metalloproteinasesMetalloproteinase profilesHigh-throughput microarrayPlasma samplesImpact of COVID-19 vaccination on symptoms and immune phenotypes in vaccine-naïve individuals with Long COVID
Grady C, Bhattacharjee B, Silva J, Jaycox J, Lee L, Silva Monteiro V, Sawano M, Massey D, Caraballo C, Gehlhausen J, Tabachnikova A, Mao T, Lucas C, Peña-Hernandez M, Xu L, Tzeng T, Takahashi T, Herrin J, Güthe D, Akrami A, Assaf G, Davis H, Harris K, McCorkell L, Schulz W, Griffin D, Wei H, Ring A, Guan L, Dela Cruz C, Krumholz H, Iwasaki A. Impact of COVID-19 vaccination on symptoms and immune phenotypes in vaccine-naïve individuals with Long COVID. Communications Medicine 2025, 5: 163. PMID: 40346201, PMCID: PMC12064684, DOI: 10.1038/s43856-025-00829-3.Peer-Reviewed Original ResearchCitationsAltmetricConceptsSpike protein-specific IgGProtein-specific IgGSelf-antigensImmune response to COVID-19 vaccinationCOVID-19 vaccineAntibody responseResponse to COVID-19 vaccinationT cell expansionSARS-CoV-2-specific antibody responsesAssociated with no improvementLong COVIDAssociated with symptom improvementChest painCirculating cytokinesImmune phenotypeProspective studyImmune featuresTransient improvementPrimary seriesVaccine doseHerpes virusImmune responseSymptom improvementSignificant elevationImpact of COVID-19 vaccinationJointPRS: A data-adaptive framework for multi-population genetic risk prediction incorporating genetic correlation
Xu L, Zhou G, Jiang W, Zhang H, Dong Y, Guan L, Zhao H. JointPRS: A data-adaptive framework for multi-population genetic risk prediction incorporating genetic correlation. Nature Communications 2025, 16: 3841. PMID: 40268942, PMCID: PMC12019179, DOI: 10.1038/s41467-025-59243-x.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsGenome-wide association studiesGenetic risk predictionUK BiobankGenome-wide association study summary statisticsAdmixed American populationsRisk predictionGenetic correlationsNon-European populationsContinental populationsAssociation studiesReal-data applicationBinary traitsTrait predictionSummary statisticsMultiple populationsAmerican populationData-adaptive approachSample sizeData applicationsAOUPopulationBiobankData scenarioTraitsPartially characterized topology guides reliable anchor-free scRNA-integration
He C, Filippidis P, Kleinstein S, Guan L. Partially characterized topology guides reliable anchor-free scRNA-integration. Communications Biology 2025, 8: 561. PMID: 40185996, PMCID: PMC11971424, DOI: 10.1038/s42003-025-07988-y.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsBatch effectsRare cell typesSingle-cell RNA sequencingCell typesDownstream statistical analysisScRNA-seqBiological insightsRNA sequencingBatch correctionCell phenotypeCellular resolutionBiological signalsState-of-the-art methodsAdaptive lossDomain adaptation lossState-of-the-artDiverse setBatch integrationHeterogeneous cell distributionReconstruction lossSequenceTriplet lossPhenotypeSignalCell distributionSalivary gland stem/progenitor cells: advancing from basic science to clinical applications
Langthasa J, Guan L, Jinagal S, Le Q. Salivary gland stem/progenitor cells: advancing from basic science to clinical applications. Cell Regeneration 2025, 14: 4. PMID: 39856475, PMCID: PMC11759724, DOI: 10.1186/s13619-025-00221-5.Peer-Reviewed Original ResearchCitationsAltmetricConceptsSalivary gland stem/progenitor cellsBioengineered organ replacementTissue-based therapiesEffective clinical therapiesRadiation therapySjogren's syndromeStem/progenitor cellsClinical therapyTherapyDifferentiation pathwayClinical applicationRegenerative medicineSyndromeTissue regenerationOrgan replacementCulture techniquesSjogrenTransplantationPatients
News & Links
Copy Link
News
- May 14, 2025
Faculty Research Awards Showcase YSPH Strengths in Science
- May 01, 2024
COVID-19: New ‘Omics’ Models Show Why Some People Are at Greater Risk of Severe Disease, Death
- June 09, 2023
Why Does COVID-19 Cause Severe Illness in Some Patients but Not Others?
- June 16, 2022
Understanding Poor Vaccine Responses in Individuals With Weakened Immune Systems
Related Links
Get In Touch
Copy Link
Contacts
Email