2024
Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract
Mao T, Kim J, Peña-Hernández M, Valle G, Moriyama M, Luyten S, Ott I, Gomez-Calvo M, Gehlhausen J, Baker E, Israelow B, Slade M, Sharma L, Liu W, Ryu C, Korde A, Lee C, Monteiro V, Lucas C, Dong H, Yang Y, Initiative Y, Gopinath S, Wilen C, Palm N, Dela Cruz C, Iwasaki A, Vogels C, Hahn A, Chen N, Breban M, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Grubaugh N. Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2319566121. PMID: 38648490, PMCID: PMC11067057, DOI: 10.1073/pnas.2319566121.Peer-Reviewed Original ResearchConceptsInterferon-stimulated genesRespiratory infectionsStrains of influenza A virusTreatment of respiratory viral infectionsRespiratory virus infectionsInfluenza A virusMouse model of COVID-19Respiratory viral infectionsNeomycin treatmentExpression of interferon-stimulated genesUpper respiratory infectionInterferon-stimulated gene expressionLower respiratory infectionsBroad spectrum of diseasesAdministration of neomycinRespiratory viral diseasesDisease to patientsUpper respiratory tractIntranasal deliveryCongenic miceIntranasal applicationNasal mucosaSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2A virus
2022
Assessment of Clinical Effectiveness of BNT162b2 COVID-19 Vaccine in US Adolescents
Oliveira CR, Niccolai LM, Sheikha H, Elmansy L, Kalinich CC, Grubaugh ND, Shapiro ED, Billig K, Breban M, Brito A, Earnest R, Fauver J, Koch T, Ott I, Petrone M, Vogels C, Pham K, Tikhonova I, Castaldi C, Mane S, Bilguvar K, De Kumar B, Ferguson D, Kerantzas N, Landry M, Peaper D, Schulz W. Assessment of Clinical Effectiveness of BNT162b2 COVID-19 Vaccine in US Adolescents. JAMA Network Open 2022, 5: e220935. PMID: 35238933, PMCID: PMC8895259, DOI: 10.1001/jamanetworkopen.2022.0935.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionCase-control studyVaccine effectivenessBNT162b2 vaccineSARS-CoV-2Medical recordsAsymptomatic SARS-CoV-2 infectionBNT162b2 COVID-19 vaccineRetrospective case-control studyRT-PCR test resultsSARS-CoV-2 testUS adolescentsReverse transcription polymerase chain reaction testConditional logistic regression modelsTranscription polymerase chain reaction testDoses of vaccineControl participantsClinical trial populationsRelevant clinical dataCase participantsCOVID-19 vaccinePositive test resultsChain reaction testCounty of residenceNegative test resultsSingle-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19
Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, Schupp JC, Asashima H, Liu Y, Cosme C, Deng W, Chen M, Raredon MSB, Hoehn KB, Wang G, Wang Z, DeIuliis G, Ravindra NG, Li N, Castaldi C, Wong P, Fournier J, Bermejo S, Sharma L, Casanovas-Massana A, Vogels CBF, Wyllie AL, Grubaugh ND, Melillo A, Meng H, Stein Y, Minasyan M, Mohanty S, Ruff WE, Cohen I, Raddassi K, Niklason L, Ko A, Montgomery R, Farhadian S, Iwasaki A, Shaw A, van Dijk D, Zhao H, Kleinstein S, Hafler D, Kaminski N, Dela Cruz C. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications 2022, 13: 440. PMID: 35064122, PMCID: PMC8782894, DOI: 10.1038/s41467-021-27716-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAgedAntibodies, Monoclonal, HumanizedCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCells, CulturedCOVID-19COVID-19 Drug TreatmentFemaleGene Expression ProfilingGene Expression RegulationHumansImmunity, InnateMaleReceptors, Antigen, B-CellReceptors, Antigen, T-CellRNA-SeqSARS-CoV-2Single-Cell AnalysisConceptsProgressive COVID-19B cell clonesSingle-cell analysisT cellsImmune responseMulti-omics single-cell analysisCOVID-19Cell clonesAdaptive immune interactionsSevere COVID-19Dynamic immune responsesGene expressionSARS-CoV-2 virusAdaptive immune systemSomatic hypermutation frequenciesCellular effectsProtein markersEffector CD8Immune signaturesProgressive diseaseHypermutation frequencyProgressive courseClassical monocytesClonesImmune interactions
2021
Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity
Lucas C, Vogels CBF, Yildirim I, Rothman JE, Lu P, Monteiro V, Gehlhausen JR, Campbell M, Silva J, Tabachnikova A, Peña-Hernandez MA, Muenker MC, Breban MI, Fauver JR, Mohanty S, Huang J, Shaw A, Ko A, Omer S, Grubaugh N, Iwasaki A. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021, 600: 523-529. PMID: 34634791, PMCID: PMC9348899, DOI: 10.1038/s41586-021-04085-y.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 variantsMRNA vaccine-induced immunityT-cell activation markersSARS-CoV-2 antibodiesSecond vaccine doseVaccine-induced immunityCell activation markersT cell responsesHigh antibody titresSARS-CoV-2Vaccine boosterVaccine doseActivation markersVaccine dosesHumoral immunityAntibody titresMRNA vaccinesVitro stimulationNeutralization capacityNeutralization responseCell responsesE484KNucleocapsid peptideAntibody-binding sitesGreater reductionDiverse functional autoantibodies in patients with COVID-19
Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, Liu F, Zhou T, Israelow B, Wong P, Coppi A, Lucas C, Silva J, Oh JE, Song E, Perotti ES, Zheng NS, Fischer S, Campbell M, Fournier JB, Wyllie AL, Vogels CBF, Ott IM, Kalinich CC, Petrone ME, Watkins AE, Dela Cruz C, Farhadian S, Schulz W, Ma S, Grubaugh N, Ko A, Iwasaki A, Ring A. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595: 283-288. PMID: 34010947, DOI: 10.1038/s41586-021-03631-y.Peer-Reviewed Original ResearchConceptsPeripheral immune cell compositionSARS-CoV-2 infectionCOVID-19Effects of autoantibodiesTissue-associated antigensSpecific clinical characteristicsInnate immune activationImmune cell compositionCOVID-19 exhibitCOVID-19 manifestsAnalysis of autoantibodiesSARS-CoV-2Functional autoantibodiesMouse surrogateClinical characteristicsVirological controlClinical outcomesImmune activationMild diseaseAsymptomatic infectionAutoantibody reactivityDisease progressionHealthcare workersHigh prevalenceAutoantibodiesDelayed production of neutralizing antibodies correlates with fatal COVID-19
Lucas C, Klein J, Sundaram ME, Liu F, Wong P, Silva J, Mao T, Oh JE, Mohanty S, Huang J, Tokuyama M, Lu P, Venkataraman A, Park A, Israelow B, Vogels CBF, Muenker MC, Chang CH, Casanovas-Massana A, Moore AJ, Zell J, Fournier JB, Wyllie A, Campbell M, Lee A, Chun H, Grubaugh N, Schulz W, Farhadian S, Dela Cruz C, Ring A, Shaw A, Wisnewski A, Yildirim I, Ko A, Omer S, Iwasaki A. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine 2021, 27: 1178-1186. PMID: 33953384, PMCID: PMC8785364, DOI: 10.1038/s41591-021-01355-0.Peer-Reviewed Original ResearchConceptsDeceased patientsAntibody levelsAntibody responseDisease severityAnti-S IgG levelsCOVID-19 disease outcomesFatal COVID-19Impaired viral controlWorse clinical progressionWorse disease severitySevere COVID-19Length of hospitalizationImmunoglobulin G levelsHumoral immune responseCoronavirus disease 2019COVID-19 mortalityCOVID-19Domain (RBD) IgGSeroconversion kineticsDisease courseIgG levelsClinical parametersClinical progressionHumoral responseDisease onsetMaternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface
Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM, Milano KM, Tang Z, Pope SD, Song E, Vogels CBF, Lu-Culligan WJ, Campbell KH, Casanovas-Massana A, Bermejo S, Toothaker JM, Lee HJ, Liu F, Schulz W, Fournier J, Muenker MC, Moore AJ, Team Y, Konnikova L, Neugebauer KM, Ring A, Grubaugh ND, Ko AI, Morotti R, Guller S, Kliman HJ, Iwasaki A, Farhadian SF. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med 2021, 2: 591-610.e10. PMID: 33969332, PMCID: PMC8084634, DOI: 10.1016/j.medj.2021.04.016.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionMaternal-fetal interfaceACE2 expressionNatural killerPregnant womenPlacental cellsAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSARS-CoV-2-infected womenTerm placentaSyndrome coronavirus 2 infectionCoronavirus 2 infectionPotential immune mechanismsRobust inflammatory responseRobust immune responseCoronavirus disease 2019Detectable viral RNAInterferon-related genesLower ACE2 expressionMajority of placentasPregnancy complicationsPlacental histologyHofbauer cellsEarly pregnancyImmune activationEarly introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States
Alpert T, Brito AF, Lasek-Nesselquist E, Rothman J, Valesano AL, MacKay MJ, Petrone ME, Breban MI, Watkins AE, Vogels CBF, Kalinich CC, Dellicour S, Russell A, Kelly JP, Shudt M, Plitnick J, Schneider E, Fitzsimmons WJ, Khullar G, Metti J, Dudley JT, Nash M, Beaubier N, Wang J, Liu C, Hui P, Muyombwe A, Downing R, Razeq J, Bart SM, Grills A, Morrison SM, Murphy S, Neal C, Laszlo E, Rennert H, Cushing M, Westblade L, Velu P, Craney A, Cong L, Peaper DR, Landry ML, Cook PW, Fauver JR, Mason CE, Lauring AS, St George K, MacCannell DR, Grubaugh ND. Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States. Cell 2021, 184: 2595-2604.e13. PMID: 33891875, PMCID: PMC8018830, DOI: 10.1016/j.cell.2021.03.061.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 lineage B.1.1.7SARS-CoV-2 variant B.1.1.7Global public health concernPublic health concernPublic health responseCOVID-19 casesLineage B.1.1.7Variant B.1.1.7Health responseHealth concernB.1.1.7Increased transmissibilityEarly introductionGenomic surveillanceUnited StatesDiagnostic dataDominant lineage
2020
Sex differences in immune responses that underlie COVID-19 disease outcomes
Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, Silva J, Mao T, Oh JE, Tokuyama M, Lu P, Venkataraman A, Park A, Liu F, Meir A, Sun J, Wang EY, Casanovas-Massana A, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Shaw A, Fournier J, Odio C, Farhadian S, Dela Cruz C, Grubaugh N, Schulz W, Ring A, Ko A, Omer S, Iwasaki A. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588: 315-320. PMID: 32846427, PMCID: PMC7725931, DOI: 10.1038/s41586-020-2700-3.Peer-Reviewed Original ResearchConceptsInnate immune cytokinesFemale patientsMale patientsImmune cytokinesDisease outcomeImmune responseCOVID-19COVID-19 disease outcomesPoor T cell responsesSARS-CoV-2 infectionSevere acute respiratory syndrome coronavirusAcute respiratory syndrome coronavirusSex-based approachModerate COVID-19Sex differencesRobust T cell activationT cell responsesWorse disease progressionWorse disease outcomesHigher plasma levelsNon-classical monocytesCoronavirus disease 2019T cell activationImmunomodulatory medicationsPlasma cytokinesSARS-CoV-2 infection of the placenta
Hosier H, Farhadian SF, Morotti RA, Deshmukh U, Lu-Culligan A, Campbell KH, Yasumoto Y, Vogels C, Casanovas-Massana A, Vijayakumar P, Geng B, Odio CD, Fournier J, Brito AF, Fauver JR, Liu F, Alpert T, Tal R, Szigeti-Buck K, Perincheri S, Larsen C, Gariepy AM, Aguilar G, Fardelmann KL, Harigopal M, Taylor HS, Pettker CM, Wyllie AL, Dela Cruz CS, Ring AM, Grubaugh ND, Ko AI, Horvath TL, Iwasaki A, Reddy UM, Lipkind HS. SARS-CoV-2 infection of the placenta. Journal Of Clinical Investigation 2020, 130: 4947-4953. PMID: 32573498, PMCID: PMC7456249, DOI: 10.1172/jci139569.Peer-Reviewed Case Reports and Technical NotesMeSH KeywordsAbortion, TherapeuticAbruptio PlacentaeAdultBetacoronavirusCoronavirus InfectionsCOVID-19FemaleHumansMicroscopy, Electron, TransmissionPandemicsPhylogenyPlacentaPneumonia, ViralPre-EclampsiaPregnancyPregnancy Complications, InfectiousPregnancy Trimester, SecondRNA, ViralSARS-CoV-2Viral LoadConceptsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2SARS-CoV-2 infectionRespiratory syndrome coronavirus 2SARS-CoV-2 invasionMaternal antibody responseSymptomatic COVID-19Second trimester pregnancySyndrome coronavirus 2Coronavirus disease 2019Materno-fetal interfaceDense macrophage infiltratesPlacental abruptionSevere preeclampsiaMacrophage infiltratesSevere morbidityTrimester pregnancyPregnant womenCoronavirus 2Antibody responseBackgroundThe effectsDisease 2019Histological examinationImmunohistochemical assaysPlacentaLongitudinal analyses reveal immunological misfiring in severe COVID-19
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu P, Venkataraman A, Park A, Mohanty S, Wang H, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Herbst R, Shaw A, Medzhitov R, Schulz W, Grubaugh N, Dela Cruz C, Farhadian S, Ko A, Omer S, Iwasaki A. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020, 584: 463-469. PMID: 32717743, PMCID: PMC7477538, DOI: 10.1038/s41586-020-2588-y.Peer-Reviewed Original ResearchConceptsSevere COVID-19Moderate COVID-19Immune signaturesDisease outcomeCOVID-19Disease trajectoriesInterleukin-5Early immune signaturesInnate cell lineagesType 2 effectorsT cell numbersPoor clinical outcomeWorse disease outcomesImmune response profileCoronavirus disease 2019Distinct disease trajectoriesCytokine levelsImmunological correlatesImmune profileClinical outcomesEarly elevationImmune profilingIL-13Immunoglobulin EDisease 2019Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19
Farhadian S, Glick LR, Vogels CBF, Thomas J, Chiarella J, Casanovas-Massana A, Zhou J, Odio C, Vijayakumar P, Geng B, Fournier J, Bermejo S, Fauver JR, Alpert T, Wyllie AL, Turcotte C, Steinle M, Paczkowski P, Dela Cruz C, Wilen C, Ko AI, MacKay S, Grubaugh ND, Spudich S, Barakat LA. Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. BMC Neurology 2020, 20: 248. PMID: 32552792, PMCID: PMC7301053, DOI: 10.1186/s12883-020-01812-2.Peer-Reviewed Original ResearchConceptsInitial presentationCentral nervous system inflammationSARS-CoV-2 infectionCSF inflammatory markersNervous system inflammationCerebrospinal fluid (CSF) cytokinesSeizure-like activityCOVID-19 infectionVirus SARS-CoV-2COVID-19SARS-CoV-2BackgroundCOVID-19Inflammatory markersNeurologic complicationsSystem inflammationImmunocompromised womanNeurologic manifestationsNeurologic symptomsViral neuroinvasionCase presentationWeInfected patientsMental statusRespiratory pathogensConclusionOur findingsInflammationImpact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes
Möhlmann TWR, Vogels CBF, Göertz GP, Pijlman GP, ter Braak CJF, te Beest DE, Hendriks M, Nijhuis EH, Warris S, Drolet BS, van Overbeek L, Koenraadt CJM. Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes. Microbial Ecology 2020, 80: 703-717. PMID: 32462391, PMCID: PMC7476999, DOI: 10.1007/s00248-020-01517-6.Peer-Reviewed Original ResearchConceptsAntibiotic treatmentGut bacteriaChikungunya virusInfection ratePathogenic arbovirusesInfectious blood mealAegypti mosquitoesGut bacterial communitiesResident gut bacteriaGut bacterial compositionSchmallenberg virusAedes aegypti mosquitoesArbovirus infectionViral pathogensVirusTreatmentBlood mealInfectionMidgut bacteriaArbovirus transmissionHealth of animalsMosquitoesArbovirusesZikaBacterial compositionThe invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus
Abbo SR, Visser TM, Wang H, Göertz GP, Fros JJ, Abma-Henkens MHC, Geertsema C, Vogels CBF, Koopmans MPG, Reusken CBEM, Hall-Mendelin S, Hall RA, van Oers MM, Koenraadt CJM, Pijlman GP. The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLOS Neglected Tropical Diseases 2020, 14: e0008217. PMID: 32282830, PMCID: PMC7153878, DOI: 10.1371/journal.pntd.0008217.Peer-Reviewed Original ResearchConceptsZika virusUsutu virusFed mosquitoesMidgut barrierMosquito midgut barrierGuillain-Barré syndromeInfectious blood mealSevere neurological impairmentSevere congenital microcephalyField-collected AeWest Nile virusClinical manifestationsMild diseaseUSUV infectionNeurological impairmentCongenital microcephalyRNA responseVirus disseminationArboviral diseasesNile virusVirus transmissionDroplet feedingVirusFemale mosquitoesBlood mealA satellite repeat-derived piRNA controls embryonic development of Aedes
Halbach R, Miesen P, Joosten J, Taşköprü E, Rondeel I, Pennings B, Vogels C, Merkling S, Koenraadt C, Lambrechts L, van Rij R. A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature 2020, 580: 274-277. PMID: 32269344, PMCID: PMC7145458, DOI: 10.1038/s41586-020-2159-2.Peer-Reviewed Original ResearchConceptsPIWI-interacting RNAsSatellite repeatsEmbryonic developmentGene expressionAbundant piwi-interacting RNAsLocal chromatin structureGlobal gene expressionTandem repeat elementsSequence-specific geneMosquito Aedes aegyptiPiRNA productionEukaryotic chromosomesChromatin structureEuchromatic regionsPiRNA sequencesMosquito biologyRepeat elementsDevelopmental arrestRepeatsDiverse classAedes aegyptiGenesTranscriptsCentral functionExpression
2019
Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens
Koenraadt CJM, Möhlmann TWR, Verhulst NO, Spitzen J, Vogels CBF. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens. Parasites & Vectors 2019, 12: 147. PMID: 30917854, PMCID: PMC6437999, DOI: 10.1186/s13071-019-3400-4.Peer-Reviewed Original ResearchConceptsVector competencePipiens mosquitoesBiotype pipiensMosquito-borne virusLaboratory-reared CxReal-time PCROlder ageConclusionsThis studyCulex pipiens mosquitoesBiotype compositionLaboratory-reared mosquitoesNile virusLaboratory-reared femalesSurvivalMonthsPipiens biotypesTwo-thirdsCulex pipiensWNV transmissionWest Nile virus vector Culex pipiensBiotype molestusPipiens femalesWNVMosquitoesSpecies Cx
2018
Vector competence of biting midges and mosquitoes for Shuni virus
Möhlmann TWR, Oymans J, Schreur P, Koenraadt CJM, Kortekaas J, Vogels CBF. Vector competence of biting midges and mosquitoes for Shuni virus. PLOS Neglected Tropical Diseases 2018, 12: e0006993. PMID: 30532189, PMCID: PMC6285265, DOI: 10.1371/journal.pntd.0006993.Peer-Reviewed Original ResearchConceptsShuni virusInfection rateInfectious blood mealEvidence of transmissionHigher infection rateFebrile childrenCongenital malformationsNeurological diseasesPotential transmissionPotential involvementHigh pathogenicityZoonotic potentialSimbu serogroupBlood mealVector competenceVirusMosquitoesRiskBroad tropismArthropod vectorsAedes aegyptiAnimalsCulex pipiens pipiensFurther researchFuture epizootics
2017
Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes
Vloet RPM, Vogels CBF, Koenraadt CJM, Pijlman GP, Eiden M, Gonzales JL, van Keulen LJM, Schreur P, Kortekaas J. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLOS Neglected Tropical Diseases 2017, 11: e0006145. PMID: 29281642, PMCID: PMC5760105, DOI: 10.1371/journal.pntd.0006145.Peer-Reviewed Original ResearchConceptsRift Valley fever virusWild-type Rift Valley fever virusVector competenceNatural target speciesTarget cellsFever virusLaboratory-reared mosquitoesSkin samplesClone 13 strainPipiens mosquitoesPeak viremiaViremic periodVector competence experimentsTransmission of RVFVLocal mosquitoesInfected animalsClone 13Artificial blood feedingArtificial feeding experimentsGenus PhlebovirusSusceptible ruminantsVirusBlood feedingField-collected eggsCompetent vectorsVirus interferes with host-seeking behaviour of mosquito
Vogels CBF, Fros JJ, Pijlman GP, van Loon JJA, Gort G, Koenraadt CJM. Virus interferes with host-seeking behaviour of mosquito. Journal Of Experimental Biology 2017, 220: 3598-3603. PMID: 28978641, DOI: 10.1242/jeb.164186.Peer-Reviewed Original ResearchVector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures
Vogels CBF, Göertz GP, Pijlman GP, Koenraadt CJM. Vector competence of northern and southern European Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures. Medical And Veterinary Entomology 2017, 31: 358-364. PMID: 28752627, DOI: 10.1111/mve.12251.Peer-Reviewed Original Research