2022
Use of host lipids by the Lyme disease spirochete may lead to biomarkers
Arora G, Hart T, Fikrig E. Use of host lipids by the Lyme disease spirochete may lead to biomarkers. Journal Of Clinical Investigation 2022, 132: e158254. PMID: 35289311, PMCID: PMC8920323, DOI: 10.1172/jci158254.Peer-Reviewed Original ResearchConceptsB. burgdorferi infectionLyme diseaseBurgdorferi infectionCareful clinical assessmentCommon tick-borne diseaseAnti-lipid antibodiesProduction of antibodiesTick-borne diseaseHost lipidsAntibody titersLyme disease agent Borrelia burgdorferiClinical assessmentCurrent biomarkersMurine modelDiseaseSerum samplesLyme disease spirocheteAntibodiesBorrelia burgdorferiInfectionBiomarkersPatientsLipidsSyphilisPhosphatidic acid
2017
Artificial Infection of Ticks with Borrelia burgdorferi Using a Microinjection Method and Their Detection In Vivo Using Quantitative PCR Targeting flaB RNA
Smith AA, Yang X, Fikrig E, Pal U. Artificial Infection of Ticks with Borrelia burgdorferi Using a Microinjection Method and Their Detection In Vivo Using Quantitative PCR Targeting flaB RNA. Methods In Molecular Biology 2017, 1690: 105-114. PMID: 29032540, DOI: 10.1007/978-1-4939-7383-5_9.Peer-Reviewed Original Research
2015
Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut
Coumou J, Narasimhan S, Trentelman JJ, Wagemakers A, Koetsveld J, Ersoz JI, Oei A, Fikrig E, Hovius JW. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut. Journal Of Molecular Medicine 2015, 94: 361-370. PMID: 26594018, PMCID: PMC4803822, DOI: 10.1007/s00109-015-1365-0.Peer-Reviewed Original ResearchConceptsB. burgdorferi transmissionTick gutLyme borreliosisTick feedingMurine modelVaccine targetsUninfected ticksRNA interferenceInfected ticksSalivary glandsBorrelia burgdorferiPotential targetGut tissueB. burgdorferiCausative agentIxodes ticksGutPrevious screeningTick proteinsGut cellsBurgdorferiMiceTicks resultsBorreliosisConfocal microscopy
2012
Immunization with adenoviral-vectored tick salivary gland proteins (SALPs) in a murine model of Lyme borreliosis
Ullmann AJ, Dolan MC, Sackal CA, Fikrig E, Piesman J, Zeidner NS. Immunization with adenoviral-vectored tick salivary gland proteins (SALPs) in a murine model of Lyme borreliosis. Ticks And Tick-borne Diseases 2012, 4: 160-163. PMID: 23141105, PMCID: PMC4306421, DOI: 10.1016/j.ttbdis.2012.08.006.Peer-Reviewed Original ResearchConceptsTick salivary proteinsBorrelia burgdorferi infectionSalivary proteinsTick salivary gland proteinsSalivary gland proteinsTh1 responseImmunized miceSpecific immunityBurgdorferi infectionMurine modelSpirochete loadLyme borreliosisPrior exposureAdenovirus expression systemAdenoviral vectorTick challengeVaccinationMammalian hostsIxodes scapularisVertebrate hosts
2011
O4-S2.05 Myd-88 deficient mice show evidence of productive T pallidum infection"
Dunne D, Silver A, Fieber J, Zeiss C, Fikrig E. O4-S2.05 Myd-88 deficient mice show evidence of productive T pallidum infection". Sexually Transmitted Infections 2011, 87: a87. DOI: 10.1136/sextrans-2011-050109.149.Peer-Reviewed Original ResearchMyD-88C57BL/6 miceDeficient miceImmunohistochemical stainsImmune responseMurine modelT pallidumDay 10Intact innate immune responseOnly natural reservoirNew Zealand male rabbitsB6 control miceInnate immune cellsUseful murine modelAged C57BL/6 miceWild-type miceInnate immune responseInnate immune systemPattern recognition receptorsImmune response mechanismsDownstream cytokine responsesSyphilis infectionSystemic illnessLymph nodesCytokine responses
2010
Immunization with Adenoviral-expressed salivary gland proteins (SALPs) decreases spirochete load in a murine model of Lyme borreliosis (52.2)
Ullmann A, Dolan M, Fikrig E, Piesman J, Zeidner N. Immunization with Adenoviral-expressed salivary gland proteins (SALPs) decreases spirochete load in a murine model of Lyme borreliosis (52.2). The Journal Of Immunology 2010, 184: 52.2-52.2. DOI: 10.4049/jimmunol.184.supp.52.2.Peer-Reviewed Original ResearchBurgdorferi infectionMurine modelTick salivary proteinsC3H/HeJ miceDendritic cell expressionCellular immune responsesBorrelia burgdorferi infectionB. burgdorferi infectionLeast partial protectionSalivary proteinsSalivary gland proteinsImmunized miceSpecific immunitySpirochete burdenImmunomodulatory factorsHeJ miceVaccination techniqueImmune responseI. scapularis ticksTarget organsProtein antibodiesCell expressionSpirochete loadTick salivaLyme borreliosis
2009
Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy
Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 2009, 27: 3013-3021. PMID: 19428913, PMCID: PMC2695996, DOI: 10.1016/j.vaccine.2009.03.034.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicAnimalsAntibody FormationCarrier ProteinsCD8-Positive T-LymphocytesDendritic CellsLactic AcidLipopolysaccharidesMiceMice, Inbred C57BLNanoparticlesNLR Family, Pyrin Domain-Containing 3 ProteinPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerVaccinationViral Envelope ProteinsWest Nile FeverWest Nile Virus VaccinesConceptsPattern recognition receptorsToll-like receptorsInflammasome activationInnate immune system activationEffective adaptive immune responseIntracellular pattern recognition receptorsAntigen-presenting cellsAdaptive immune responsesWest Nile encephalitisImmune system activationInnate immune pathwaysWild-type macrophagesDendritic cellsCellular immunityVaccination approachesVaccine efficacyIL-1betaNLRP3 inflammasomeAdjuvant systemImmune responsePotent new approachMurine modelInflammasome activitySystem activationImmune pathwaysInflammasome-activating biodegradable nanoparticulates as vaccine delivery systems (135.80)
Fahmy T, DEMENTO S, Eisenbarth S, Caplan M, Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell R. Inflammasome-activating biodegradable nanoparticulates as vaccine delivery systems (135.80). The Journal Of Immunology 2009, 182: 135.80-135.80. DOI: 10.4049/jimmunol.182.supp.135.80.Peer-Reviewed Original ResearchToll-like receptorsIL-1βInflammasome activationProinflammatory cytokines IL-1βAntigen-presenting cellsClass of nanomaterialsCytokines IL-1βSurface of nanoparticlesWest Nile encephalitisInnate immune pathwaysVaccine delivery systemWild-type macrophagesCellular immunityVaccination approachesMurine modelInflammasome activityType macrophagesImmune pathwaysAdjuvant deliveryDanger signalsVaccine designModel antigenLipopolysaccharideAntigenBiocompatible polyester
2007
IL-12/23p40-dependent clearance of Anaplasma phagocytophilum in the murine model of human anaplasmosis
Pedra JH, Tao J, Sutterwala FS, Sukumaran B, Berliner N, Bockenstedt LK, Flavell RA, Yin Z, Fikrig E. IL-12/23p40-dependent clearance of Anaplasma phagocytophilum in the murine model of human anaplasmosis. Pathogens And Disease 2007, 50: 401-410. PMID: 17521390, DOI: 10.1111/j.1574-695x.2007.00270.x.Peer-Reviewed Original ResearchConceptsIL-12/23p40Deficient miceT cellsImmune responseHuman anaplasmosisTh1 immune responseIFN-gamma productionDay 6 postinfectionAnaplasma phagocytophilumA. phagocytophilum burdenIL-23Dendritic cellsIL-12Neutrophil numbersIFN-gammaMurine modelMicrobial agonistsPathogen clearanceDependent clearanceInfectious diseasesEarly susceptibilityPathogen eliminationCausative agentA. phagocytophilumIndependent mechanismsRole of Outer Surface Protein D in the Borrelia burgdorferi Life Cycle
Li X, Neelakanta G, Liu X, Beck DS, Kantor FS, Fish D, Anderson JF, Fikrig E. Role of Outer Surface Protein D in the Borrelia burgdorferi Life Cycle. Infection And Immunity 2007, 75: 4237-4244. PMID: 17620358, PMCID: PMC1951184, DOI: 10.1128/iai.00632-07.Peer-Reviewed Original ResearchConceptsB. burgdorferiSecond blood mealMurine modelSpirochete transmissionB. burgdorferi persistenceLyme borreliosisMiceB. burgdorferi strainsProtein DI. scapularisTick gutBlood mealBurgdorferi strainsSpirochete life cycleBurgdorferiGut extractsIxodes scapularisB. burgdorferi infectivityThreefold decreaseHost-specific signalsScapularisTicksBorreliosis
2002
Differential Expression of the p44 Gene Family in the Agent of Human Granulocytic Ehrlichiosis
IJdo JW, Wu C, Telford SR, Fikrig E. Differential Expression of the p44 Gene Family in the Agent of Human Granulocytic Ehrlichiosis. Infection And Immunity 2002, 70: 5295-5298. PMID: 12183586, PMCID: PMC128253, DOI: 10.1128/iai.70.9.5295-5298.2002.Peer-Reviewed Original ResearchConceptsP44 geneDifferential expressionHuman granulocytic ehrlichiosisGene familyAntigenic variationHGE bacteriaTransmission feedingGranulocytic ehrlichiosisGenesHypervariable regionInfected C3H miceP44 expressionTick transmissionExpressionSCID miceC3H miceHGE infectionMurine modelInfected ticksSalivary glandsNymphal ticksMiceTicksEhrlichiosisBacteriaMurine Lyme Arthritis Development Mediated by p38 Mitogen-Activated Protein Kinase Activity
Anguita J, Barthold SW, Persinski R, Hedrick MN, Huy CA, Davis RJ, Flavell RA, Fikrig E. Murine Lyme Arthritis Development Mediated by p38 Mitogen-Activated Protein Kinase Activity. The Journal Of Immunology 2002, 168: 6352-6357. PMID: 12055252, PMCID: PMC4309983, DOI: 10.4049/jimmunol.168.12.6352.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, BacterialArthritis, InfectiousBorrelia burgdorferiCD4-Positive T-LymphocytesCell LineEnzyme ActivationInflammationInterferon-gammaLyme DiseaseMAP Kinase Kinase 3MAP Kinase Signaling SystemMiceMice, KnockoutMitogen-Activated Protein Kinase KinasesMitogen-Activated Protein KinasesP38 Mitogen-Activated Protein KinasesPhagocytesPhosphorylationProtein-Tyrosine KinasesReceptors, InterferonConceptsProinflammatory cytokine productionCytokine productionT helper type 1 responsePhagocytic cellsDevelopment of arthritisPotential new therapeutic approachType 1 responseInfection of miceExperimental murine modelMurine Lyme arthritisNew therapeutic approachesLyme arthritis developmentTreatment of inflammationCytokine burstArthritis developmentJoint inflammationLyme arthritisNF-kappa BProinflammatory cytokinesTNF-alphaT cellsMurine modelTherapeutic approachesP38 MAP kinaseSpecific Abs
2001
Inhibition of Borrelia burgdorferi-Tick Interactions In Vivo by Outer Surface Protein A Antibody
Pal U, Montgomery R, Lusitani D, Voet P, Weynants V, Malawista S, Lobet Y, Fikrig E. Inhibition of Borrelia burgdorferi-Tick Interactions In Vivo by Outer Surface Protein A Antibody. The Journal Of Immunology 2001, 166: 7398-7403. PMID: 11390491, DOI: 10.4049/jimmunol.166.12.7398.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Bacterial AgentsAntibodies, BacterialAntibodies, MonoclonalAntigens, SurfaceBacterial Outer Membrane ProteinsBacterial VaccinesBinding Sites, AntibodyBorrelia burgdorferi GroupDigestive SystemEpitopesFemaleImmune SeraInjections, IntraperitonealInjections, SubcutaneousIxodesLipoproteinsLyme DiseaseLyme Disease VaccinesMiceMice, SCIDMutationProtein Structure, TertiaryRecombinant ProteinsConceptsB. burgdorferi sensu strictoBurgdorferi sensu strictoB. burgdorferi N40Treatment of miceOuter Surface ProteinsB. burgdorferi sensu lato genospeciesSurface protein AOuter surface protein ASCID miceMurine modelB. burgdorferi attachmentLyme diseaseMiceB. burgdorferiBorrelia afzeliiB. afzeliiTick gutBorrelia gariniiOspAVivoAdherenceAntiserumPresent studySurface proteinsGut
1997
Immunization against the agent of human granulocytic ehrlichiosis in a murine model.
Sun W, IJdo JW, Telford SR, Hodzic E, Zhang Y, Barthold SW, Fikrig E. Immunization against the agent of human granulocytic ehrlichiosis in a murine model. Journal Of Clinical Investigation 1997, 100: 3014-3018. PMID: 9399947, PMCID: PMC508513, DOI: 10.1172/jci119855.Peer-Reviewed Original ResearchConceptsHuman granulocytic ehrlichiosisGranulocytic ehrlichiosisC3H/HeN miceAgent of HGEMimic human diseaseTick-borne infectionsTransient neutropeniaHeN miceMurine modelPolymorphonuclear leukocytesTick-borne pathogensAoHGEMiceImmunityEhrlichiosisSyringe inoculationHuman diseasesAgentsNeutropeniaImmunizationInfectionLeukocytesDiseaseAntibodies
1996
Identification of a Borrelia burgdorferi OspA T cell epitope that promotes anti-OspA IgG in mice.
Bockenstedt LK, Fikrig E, Barthold SW, Flavell RA, Kantor FS. Identification of a Borrelia burgdorferi OspA T cell epitope that promotes anti-OspA IgG in mice. The Journal Of Immunology 1996, 157: 5496-502. PMID: 8955199, DOI: 10.4049/jimmunol.157.12.5496.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibodies, BacterialAntigens, BacterialAntigens, SurfaceBacterial Outer Membrane ProteinsBacterial VaccinesEpitope MappingFemaleImmunization, PassiveImmunoglobulin GInterleukin-4LipoproteinsLymphocyte ActivationMiceMice, Inbred C3HMolecular Sequence DataPeptidesT-LymphocytesVaccines, SyntheticConceptsT cell epitopesCell epitopesPhase III efficacy studiesTick-borne spirochete Borrelia burgdorferiTreatment-resistant Lyme arthritisT cell responsesSurface protein AB-cell epitopesOuter surface protein ALyme arthritisChallenge infectionIgG productionN-terminal epitopeT cellsMultisystem disorderMurine modelSpirochete Borrelia burgdorferiSubunit vaccineEfficacy studiesCell responsesRecombinant vaccineLyme borreliosisLyme diseaseInfectionBorrelia burgdorferi
1993
Protective immunity in lyme borreliosis
Fikrig E, Kantor FS, Barthold SW, Flavell RA. Protective immunity in lyme borreliosis. Trends In Parasitology 1993, 9: 129-131. PMID: 15463734, DOI: 10.1016/0169-4758(93)90176-g.Peer-Reviewed Original ResearchLyme diseaseCommon vector-borne illnessLyme borreliosisVector-borne illnessInitial diagnosisProtective immunityLate diseaseMurine modelSpirochete Borrelia burgdorferiVaccine candidatesSurface antigenEarly infectionDiseaseBorrelia burgdorferiBorreliosisTherapyVaccineIllnessInfectionAntigenDiagnosisImmunity