2019
Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians
Valero K, Marshall J, Bastiaans E, Caccone A, Camargo A, Morando M, Niemiller M, Pabijan M, Russello M, Sinervo B, Werneck F, Sites J, , Wiens J, Steinfartz S. Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes 2019, 10: 646. PMID: 31455040, PMCID: PMC6769790, DOI: 10.3390/genes10090646.Peer-Reviewed Original ResearchMeSH KeywordsAmphibiansAnimalsEcosystemEvolution, MolecularGenetic SpeciationReptilesSelection, GeneticConceptsEcological speciationSpeciation researchIntegrative taxonomyGenetics of speciationProcess of speciationSouth American lizardsSpeciation ratesPhenotypic evolutionEvolutionary forcesClimatic nicheEuropean salamandersPhenotypic traitsGenetic mechanismsEcological aspectsBiogeographyReptilesSpeciationAmphibiansCase studyGenomicsLizardsGeneticsTaxonomyFinal case studySalamanders
2016
Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda
Gloria-Soria A, Dunn WA, Telleria EL, Evans BR, Okedi L, Echodu R, Warren WC, Montague MJ, Aksoy S, Caccone A. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda. G3: Genes, Genomes, Genetics 2016, 6: 1573-1584. PMID: 27172181, PMCID: PMC4889654, DOI: 10.1534/g3.116.027235.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsChromosome MappingDNA, MitochondrialGene-Environment InteractionGenes, InsectGenetic LinkageGenetic VariationGenetics, PopulationGenome-Wide Association StudyGenome, InsectGenomicsGenotypeGeographyHigh-Throughput Nucleotide SequencingLinkage DisequilibriumMicrosatellite RepeatsPolymorphism, Single NucleotideSelection, GeneticTsetse FliesUgandaConceptsSingle nucleotide polymorphismsLinkage disequilibriumExtent of LDLocal environmental adaptationGenome-wide variationDetection of lociOverall linkage disequilibriumInsect vectorsDifferent environmental conditionsWhole-genome sequencingPopulation genomicsStrong selectionAssociation analysisEnvironmental adaptationGenomic patternsPopulation dynamicsSignificant genetic associationUninfected fliesDisease transmissionSequence technologyAssociation studiesEnvironmental conditionsTsetse fliesHuman African trypanosomiasisRelevant phenotypes
2013
HUMAN IMPACTS HAVE SHAPED HISTORICAL AND RECENT EVOLUTION IN AEDES AEGYPTI, THE DENGUE AND YELLOW FEVER MOSQUITO
Brown JE, Evans BR, Zheng W, Obas V, Barrera‐Martinez L, Egizi A, Zhao H, Caccone A, Powell JR. HUMAN IMPACTS HAVE SHAPED HISTORICAL AND RECENT EVOLUTION IN AEDES AEGYPTI, THE DENGUE AND YELLOW FEVER MOSQUITO. Evolution 2013, 68: 514-525. PMID: 24111703, PMCID: PMC3946797, DOI: 10.1111/evo.12281.Peer-Reviewed Original ResearchMeSH KeywordsAedesAnimalsEvolution, MolecularGenes, InsectHuman MigrationHumansPhylogeographyPolymorphism, Single NucleotideSelection, GeneticConceptsYellow fever mosquitoSingle nucleotide polymorphism (SNP) markersHuman trade routesPatterns of domesticationArthropod disease vectorsDomestic formsNuclear genesEcological overlapEvolutionary historyDomestic AePolymorphism markersNovel nichesDNA sequencesGenetic dataEvolutionary processesDisease vectorsGenetic studiesSuch speciesLater invasionDNA sequencingNew WorldSpeciesAnthropogenic impactsHuman impactAnthropogenic forces
2010
Anopheles Immune Genes and Amino Acid Sites Evolving Under the Effect of Positive Selection
Parmakelis A, Moustaka M, Poulakakis N, Louis C, Slotman MA, Marshall JC, Awono-Ambene PH, Antonio-Nkondjio C, Simard F, Caccone A, Powell JR. Anopheles Immune Genes and Amino Acid Sites Evolving Under the Effect of Positive Selection. PLOS ONE 2010, 5: e8885. PMID: 20126662, PMCID: PMC2811201, DOI: 10.1371/journal.pone.0008885.Peer-Reviewed Original ResearchConceptsPositive selectionImmune genesGambiae complexDN/dS ratiosLineage-specific evolutionPopulation genetics frameworkAmino acid sitesAnopheles gambiae complexSpecific amino acidsInnate immunity genesAncestral polymorphismComparative phylogeneticsGene diversityEvolutionary historyNatural populationsGenetic diversityGenetic frameworkNatural selectionImmunity genesVector biologyDS ratiosGenesAmino acidsDiversityGenetic knowledge
2008
The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex
Parmakelis A, Slotman MA, Marshall JC, Awono-Ambene PH, Antonio-Nkondjio C, Simard F, Caccone A, Powell JR. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex. BMC Ecology And Evolution 2008, 8: 79. PMID: 18325105, PMCID: PMC2288592, DOI: 10.1186/1471-2148-8-79.Peer-Reviewed Original ResearchConceptsInsect innate immune systemAnopheles gambiae speciesLevel of polymorphismAnopheles gambiae complexSpecific adaptive responsesAncestral polymorphismPhylogenetic frameworkMolecular evolutionSuch genesGambiae speciesPositive selectionImmunity genesSelection pressureCandidate genesImmune genesMosquito's abilityGambiae complexStudied genesGenesInnate immune systemAdaptive responseMalaria parasitesPlasmodium parasitesEase of manipulationSpecies
2007
Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis
Slotman MA, Parmakelis A, Marshall JC, Awono-Ambene PH, Antonio-Nkondjo C, Simard F, Caccone A, Powell JR. Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis. PLOS ONE 2007, 2: e793. PMID: 17726523, PMCID: PMC1945087, DOI: 10.1371/journal.pone.0000793.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnophelesEvolution, MolecularFemaleGenetic VariationInsect ProteinsInsect VectorsPlasmodium falciparumSelection, GeneticConceptsAdaptive evolutionPrimary malaria vectorMalaria vectorsPatterns of selectionNon-vector speciesAnopheles gambiae complexMcDonald-KreitmanReplacement substitutionsPositive selectionGenetic variationMalaria vector AnLRIM1Immune genesSelection showGambiae complexGenesAdjacent codonsProtein differentiationLevel of resistanceAdaptive responsePlasmodium speciesCEC1Vector AnMaximum likelihood testSpecies
2006
Kin distribution of amphibian larvae in the wild
HALVERSON M, SKELLY D, CACCONE A. Kin distribution of amphibian larvae in the wild. Molecular Ecology 2006, 15: 1139-1145. PMID: 16599972, DOI: 10.1111/j.1365-294x.2006.02819.x.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimal MigrationAnimalsFresh WaterGenetic Carrier ScreeningLarvaMicrosatellite RepeatsRanidaeSelection, GeneticSiblingsConceptsAmphibian larvaeKin selection theoryKin selection hypothesisWood frog tadpolesVertebrate groupsAnuran amphibian larvaeAnuran speciesNonreproductive animalsAnuran larvaeMicrosatellite analysisSelection hypothesisSelection theoryFrog tadpolesLarvaeSpeciesNatural conditionsTadpolesWildPondsImportant ramificationsRelativesFitnessFirst exampleFirst timeGiant tortoises
Powell J, Caccone A. Giant tortoises. Current Biology 2006, 16: r144-r145. PMID: 16527726, DOI: 10.1016/j.cub.2006.02.050.Peer-Reviewed Original Research