2013
Bayesian shrinkage methods for partially observed data with many predictors
Boonstra P, Mukherjee B, Taylor J. Bayesian shrinkage methods for partially observed data with many predictors. The Annals Of Applied Statistics 2013, 7: 2272-2292. PMID: 24436727, PMCID: PMC3891514, DOI: 10.1214/13-aoas668.Peer-Reviewed Original ResearchFraction of missing informationOptimal bias-variance tradeoffBayesian shrinkage methodsEmpirical Bayes algorithmComprehensive simulation studyBias-variance tradeoffSurrogate covariatesSimulation studyShrinkage methodCovariatesPrediction problemState-of-the-artModel parametersProblemMissing dataLung cancer datasetBayes algorithmState-of-the-art technologiesArray technologyCancer datasetsQRT-PCR
2010
Missing Exposure Data in Stereotype Regression Model: Application to Matched Case–Control Study with Disease Subclassification
Ahn J, Mukherjee B, Gruber S, Sinha S. Missing Exposure Data in Stereotype Regression Model: Application to Matched Case–Control Study with Disease Subclassification. Biometrics 2010, 67: 546-558. PMID: 20560931, PMCID: PMC3119773, DOI: 10.1111/j.1541-0420.2010.01453.x.Peer-Reviewed Original ResearchConceptsStereotype regression modelSubtypes of casesDeletion of observationsExpectation/conditional maximization algorithmBaseline category logit modelEstimation of model parametersMissingness mechanismData mechanismCase-control dataProportional oddsBayesian approachCategorical responsesCase-control studyCase-control study of colorectal cancerMissingnessMaximization algorithmCategorical outcomesMonte CarloModel assumptionsRegression modelsStudy of colorectal cancerModel parametersNonidentifiabilityDisease subclassificationMultinomial logit model