Polyamide reverse osmosis membrane compaction and relaxation: Mechanisms and implications for desalination performance
Wu J, He J, Quezada-Renteria J, Le J, Au K, Guo K, Xiao M, Wang X, Dlamini D, Fan H, Pataroque K, Suleiman Y, Shahbazmohamadi S, Elimelech M, Li Y, Hoek E. Polyamide reverse osmosis membrane compaction and relaxation: Mechanisms and implications for desalination performance. Journal Of Membrane Science 2024, 706: 122893. DOI: 10.1016/j.memsci.2024.122893.Peer-Reviewed Original ResearchPA layerCrosslinking degreeNEMD simulationsComposite RO membranePA RO membranesComposite reverse osmosisRelaxation behaviorMechanism of compactionFree volume changesViscous flow of waterDesalination performanceRO membranesReverse osmosisSelective layerInterfacial polymerizationMembrane compactionViscoelastic propertiesViscous flowWater permeationPA filmInitial permeabilityMonomer ratioFlow of waterPermeation experimentsSimulationMore resilient polyester membranes for high-performance reverse osmosis desalination
Yao Y, Zhang P, Sun F, Zhang W, Li M, Sha G, Teng L, Wang X, Huo M, DuChanois R, Cao T, Boo C, Zhang X, Elimelech M. More resilient polyester membranes for high-performance reverse osmosis desalination. Science 2024, 384: 333-338. PMID: 38669571, DOI: 10.1126/science.adk0632.Peer-Reviewed Original ResearchThin-film composite reverse osmosis membranesComposite reverse osmosis membranesReverse osmosis membranesOsmosis membranesPolyamide membranesPoor chlorine resistanceExcellent water permeabilityReverse osmosis desalinationWater-salt selectivityWater permeabilityPolyester membraneBoron rejectionSalt rejectionFouling propensityTrimesoyl chlorideOsmosis desalinationInterfacial polymerizationHigh rejectionLow-energy surfacesPolyamide filmsChlorine resistancePrevent foulingWater purificationDesalinationFoulingHeat diffusion during thin-film composite membrane formation
Deshmukh A, Lienhard J, Elimelech M. Heat diffusion during thin-film composite membrane formation. Journal Of Membrane Science 2024, 696: 122493. DOI: 10.1016/j.memsci.2024.122493.Peer-Reviewed Original ResearchThin-film compositeInterfacial temperature riseInterfacial polymerizationInterfacial temperatureComposite membrane formationProperties of solventsHigh separation performanceThin-film composite membranesTemperature riseTransient heat conduction modelThermal propertiesRobust mechanical supportPolymeric supportCombination of analytical solutionsSelective layerTransient heat conductionThermal effusivitiesSeparation performanceChemical structureReaction interfaceHeat conduction modelInterlayer materialReverse osmosisMetal interlayerSupport layerPressure-driven membrane desalination
Liu W, Livingston J, Wang L, Wang Z, del Cerro M, Younssi S, Epsztein R, Elimelech M, Lin S. Pressure-driven membrane desalination. Nature Reviews Methods Primers 2024, 4: 10. DOI: 10.1038/s43586-023-00287-y.Peer-Reviewed Original ResearchMembrane fabricationReverse osmosisThin-film composite polyamide membranesProcess configurationsEvaluate membrane performanceMembrane desalinationMembrane performanceNanofiltration membranesInterfacial polymerizationPolyamide membranesInterfacial propertiesNanofiltrationOsmosisSystem modelFabricationPerformance evaluationExperimental procedurePerformanceConfigurationDesalinationApplicationsSaline waterProcess