2013
Bayesian semiparametric analysis for two-phase studies of gene-environment interaction
Ahn J, Mukherjee B, Gruber S, Ghosh M. Bayesian semiparametric analysis for two-phase studies of gene-environment interaction. The Annals Of Applied Statistics 2013, 7: 543-569. PMID: 24587840, PMCID: PMC3935248, DOI: 10.1214/12-aoas599.Peer-Reviewed Original ResearchBayesian variable selection algorithmTwo-phase sampling designGene-environment independencePseudo-likelihood methodJoint effects of genotypeGene-environment interactionsHigh-dimensional modelsWeighted likelihoodCase-control study of colorectal cancerJoint distributionHierarchical priorsSemiparametric analysisRetrospective likelihoodGenetic markersCovariate informationLikelihood methodSimulation studyStudy of gene-environment interactionsStudy of colorectal cancerVariable selection algorithmBayesian approachPhase I dataSub-sample of casesBayesian methodsBayesian analysis
2012
On the equivalence of posterior inference based on retrospective and prospective likelihoods: application to a case‐control study of colorectal cancer
Ghosh M, Song J, Forster J, Mitra R, Mukherjee B. On the equivalence of posterior inference based on retrospective and prospective likelihoods: application to a case‐control study of colorectal cancer. Statistics In Medicine 2012, 31: 2196-2208. PMID: 22495822, DOI: 10.1002/sim.5358.Peer-Reviewed Original ResearchConceptsPosterior inferenceCase-control study of colorectal cancerOdds ratio parametersCategorical response dataBayesian analysis of dataStudy of colorectal cancerCase-control studyGeneral classProspective likelihoodSimulation studyCategorical responsesBayesian analysisColorectal cancerMatched case-control studyInferenceAnalysis of dataResponse dataPriorsRetrospective designRetrospective modelEquivalenceLikelihood‐based methods for regression analysis with binary exposure status assessed by pooling
Lyles R, Tang L, Lin J, Zhang Z, Mukherjee B. Likelihood‐based methods for regression analysis with binary exposure status assessed by pooling. Statistics In Medicine 2012, 31: 2485-2497. PMID: 22415630, PMCID: PMC3528351, DOI: 10.1002/sim.4426.Peer-Reviewed Original ResearchConceptsPopulation-based case-control study of colorectal cancerCase-control study of colorectal cancerPopulation-based case-control studyStudy of colorectal cancerExposure statusBinary outcomesRegression modelsCase-control sampleLogistic regression modelsGene-disease associationsObserved binary outcomeStudy designEpidemiological studiesColorectal cancerAssess exposureMaximum likelihood analysisRegression analysisLikelihood-based methodsExposure assessmentMaximum likelihood approachLikelihood approachCross-sectionSimulation studyOutcomesLikelihood analysis
2011
Logistic regression analysis of biomarker data subject to pooling and dichotomization
Zhang Z, Liu A, Lyles R, Mukherjee B. Logistic regression analysis of biomarker data subject to pooling and dichotomization. Statistics In Medicine 2011, 31: 2473-2484. PMID: 21953741, DOI: 10.1002/sim.4367.Peer-Reviewed Original ResearchConceptsPopulation-based case-control study of colorectal cancerCase-control study of colorectal cancerProspective logistic regression modelPopulation-based case-control studyStudy of colorectal cancerEpidemiological studiesLogistic regression modelsAnalysis of epidemiological dataLogistic regression analysisBinary exposurePooled measureColorectal cancerRegression modelsEpidemiological dataRegression analysisAnalysis of biomarker dataDisease statusExposed subjectsBiomarker dataChoice of designSubjectsEstimated parametersStatusRecommendations
2010
Missing Exposure Data in Stereotype Regression Model: Application to Matched Case–Control Study with Disease Subclassification
Ahn J, Mukherjee B, Gruber S, Sinha S. Missing Exposure Data in Stereotype Regression Model: Application to Matched Case–Control Study with Disease Subclassification. Biometrics 2010, 67: 546-558. PMID: 20560931, PMCID: PMC3119773, DOI: 10.1111/j.1541-0420.2010.01453.x.Peer-Reviewed Original ResearchConceptsStereotype regression modelSubtypes of casesDeletion of observationsExpectation/conditional maximization algorithmBaseline category logit modelEstimation of model parametersMissingness mechanismData mechanismCase-control dataProportional oddsBayesian approachCategorical responsesCase-control studyCase-control study of colorectal cancerMissingnessMaximization algorithmCategorical outcomesMonte CarloModel assumptionsRegression modelsStudy of colorectal cancerModel parametersNonidentifiabilityDisease subclassificationMultinomial logit model
2009
Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis
Mukherjee B, Ahn J, Gruber S, Ghosh M, Chatterjee N. Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis. Biometrics 2009, 66: 934-948. PMID: 19930190, PMCID: PMC3103064, DOI: 10.1111/j.1541-0420.2009.01357.x.Peer-Reviewed Original ResearchConceptsGene-environment interactionsCase-control study of colorectal cancerStudy of gene-environment interactionsStudy of colorectal cancerGene-environment independenceRed meat consumptionBayesian designCase-control studyBayesian approachSample size determination criteriaCase-controlEpidemiological studiesColorectal cancerFrequentist counterpartsNatural wayMeat consumptionAnalyze current dataHypothesis testingDetermination criteriaSmokingEpidemiological exposureAnalysis strategyStudy
2008
Tests for gene‐environment interaction from case‐control data: a novel study of type I error, power and designs
Mukherjee B, Ahn J, Gruber S, Rennert G, Moreno V, Chatterjee N. Tests for gene‐environment interaction from case‐control data: a novel study of type I error, power and designs. Genetic Epidemiology 2008, 32: 615-626. PMID: 18473390, DOI: 10.1002/gepi.20337.Peer-Reviewed Original ResearchConceptsGene-environment independence assumptionCase-control studyGene-environment interactionsGene-environment associationsCase-onlyCase-control study of colorectal cancerDetection of gene-environment interactionsType I errorGene-environment dependenceStudy of colorectal cancerGene-environment independenceEffect of genetic susceptibilityCase-only methodCase-only estimatorCase-control estimatorsCase-control dataGene-environment effectsCase-control designCase-control methodCase-control analysisGlutathione S-transferase M1Empirical-BayesEpidemiological researchCase-controlColorectal cancer
2007
Accounting for error due to misclassification of exposures in case–control studies of gene–environment interaction
Zhang L, Mukherjee B, Ghosh M, Gruber S, Moreno V. Accounting for error due to misclassification of exposures in case–control studies of gene–environment interaction. Statistics In Medicine 2007, 27: 2756-2783. PMID: 17879261, DOI: 10.1002/sim.3044.Peer-Reviewed Original ResearchConceptsCase-control studyCase-control study of colorectal cancerGene-environment independence assumptionStudy of gene-environment interactionsStudy of colorectal cancerCase-control study designEnvironmental exposuresDisease-exposure associationsCase-control dataMisclassification of exposureGene-environment interactionsDegree of misclassificationStudy designConfidence intervalsGenotyping errorsValidation subsampleColorectal cancerAnalysis of dataMisclassification error rateGenetic factorsIndependence assumptionMisclassificationMisclassified dataAnalytical formEstimation strategy