2012
Point source modeling of matched case–control data with multiple disease subtypes
Li S, Mukherjee B, Batterman S. Point source modeling of matched case–control data with multiple disease subtypes. Statistics In Medicine 2012, 31: 3617-3637. PMID: 22826092, PMCID: PMC4331356, DOI: 10.1002/sim.5388.Peer-Reviewed Original ResearchConceptsAdjacent-category logit modelMarkov chain Monte Carlo techniquesEvaluate maximum likelihoodExtensive simulation studyProfile likelihoodHierarchical Bayesian approachCase-control dataSimulation studyBayesian approachMonte Carlo techniqueBayesian methodsMaximum likelihoodMultiple disease subtypesCategorical outcomesCovariate adjustmentNonlinear modelEstimation stabilityMedicaid claims dataCase-control designPediatric asthma populationAsthma populationElevated oddsMarkovLogit modelCovariates
2009
Shrinkage estimation for robust and efficient screening of single‐SNP association from case‐control genome‐wide association studies
Luo S, Mukherjee B, Chen J, Chatterjee N. Shrinkage estimation for robust and efficient screening of single‐SNP association from case‐control genome‐wide association studies. Genetic Epidemiology 2009, 33: 740-750. PMID: 19434716, PMCID: PMC3103068, DOI: 10.1002/gepi.20428.Peer-Reviewed Original ResearchMeSH KeywordsCase-Control StudiesComputational BiologyComputer SimulationData Interpretation, StatisticalFalse Positive ReactionsGenetic MarkersGenomeGenome-Wide Association StudyGenome, HumanGenotypeHumansLikelihood FunctionsModels, StatisticalPolymorphism, Single NucleotideReproducibility of ResultsConceptsHardy-Weinberg equilibriumAssociation TestPopulation-based case-control designGenome-wide association scanGenome-wide association studiesSingle-SNP associationsCase-control designCase-control studyAssociation scansAssociation studiesGenetic markersSusceptibility SNPsRecessive effectUnderlying populationAssociationFalse-positive resultsEfficient screeningSNPsRare diseaseShrinkage estimatorsSimulation studyStudyTestTwo-degrees-of-freedomPopulation
2008
Tests for gene‐environment interaction from case‐control data: a novel study of type I error, power and designs
Mukherjee B, Ahn J, Gruber S, Rennert G, Moreno V, Chatterjee N. Tests for gene‐environment interaction from case‐control data: a novel study of type I error, power and designs. Genetic Epidemiology 2008, 32: 615-626. PMID: 18473390, DOI: 10.1002/gepi.20337.Peer-Reviewed Original ResearchConceptsGene-environment independence assumptionCase-control studyGene-environment interactionsGene-environment associationsCase-onlyCase-control study of colorectal cancerDetection of gene-environment interactionsType I errorGene-environment dependenceStudy of colorectal cancerGene-environment independenceEffect of genetic susceptibilityCase-only methodCase-only estimatorCase-control estimatorsCase-control dataGene-environment effectsCase-control designCase-control methodCase-control analysisGlutathione S-transferase M1Empirical-BayesEpidemiological researchCase-controlColorectal cancerInference of the Haplotype Effect in a Matched Case-Control Study Using Unphased Genotype Data
Sinha S, Gruber S, Mukherjee B, Rennert G. Inference of the Haplotype Effect in a Matched Case-Control Study Using Unphased Genotype Data. The International Journal Of Biostatistics 2008, 4: article 6. PMID: 20231916, PMCID: PMC2835450, DOI: 10.2202/1557-4679.1079.Peer-Reviewed Original ResearchConceptsCase-control studyUnphased genotype dataHardy-Weinberg equilibriumLocus-specific genotype dataGenotype dataBeta-Carotene Cancer Prevention StudyCancer Prevention StudyCase-control study designStudy of breast cancer patientsMatched case-control studyCase-control designPhasing of haplotypesDisease risk modelsBreast cancer patientsPrevention StudyHaplotype effectsStudy designGametic phasePolymorphic lociHaplotype frequenciesCancer patientsLociConditional likelihood approachAssociationHaplotypes