2023
Trends in mosquito species distribution modeling: insights for vector surveillance and disease control
Lippi C, Mundis S, Sippy R, Flenniken J, Chaudhary A, Hecht G, Carlson C, Ryan S. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control. Parasites & Vectors 2023, 16: 302. PMID: 37641089, PMCID: PMC10463544, DOI: 10.1186/s13071-023-05912-z.Peer-Reviewed Original ResearchConceptsSpecies distribution modelsSpecies distribution modelling methodsSpecies distribution modelling literatureDisease vectorsDistribution modelMosquito-borne disease riskInfectious disease vectorsGlobal changeMosquito speciesSpeciesMethodological focusNorth AmericaOutbreak riskDisease riskGeographyMosquitoesModeling effortsRegional modelSystematic reviewEcologyExploring the Mosquito–Arbovirus Network: A Survey of Vector Competence Experiments
Chen B, Sweeny A, Wu V, Christofferson R, Ebel G, Fagre A, Gallichotte E, Kading R, Ryan S, Carlson C. Exploring the Mosquito–Arbovirus Network: A Survey of Vector Competence Experiments. American Journal Of Tropical Medicine And Hygiene 2023, 108: 987-994. PMID: 37037424, PMCID: PMC10160896, DOI: 10.4269/ajtmh.22-0511.Peer-Reviewed Original ResearchMeSH KeywordsAedesAnimalsArbovirus InfectionsArbovirusesCulicidaeDisease OutbreaksHumansMosquito VectorsRapid range shifts in African Anopheles mosquitoes over the last century
Carlson C, Bannon E, Mendenhall E, Newfield T, Bansal S. Rapid range shifts in African Anopheles mosquitoes over the last century. Biology Letters 2023, 19: 20220365. PMID: 36789530, PMCID: PMC9929507, DOI: 10.1098/rsbl.2022.0365.Peer-Reviewed Original Research
2022
A minimum data standard for vector competence experiments
Wu V, Chen B, Christofferson R, Ebel G, Fagre A, Gallichotte E, Sweeny A, Carlson C, Ryan S. A minimum data standard for vector competence experiments. Scientific Data 2022, 9: 634. PMID: 36261651, PMCID: PMC9582208, DOI: 10.1038/s41597-022-01741-4.Peer-Reviewed Original Research
2020
Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050
Ryan S, Carlson C, Tesla B, Bonds M, Ngonghala C, Mordecai E, Johnson L, Murdock C. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Global Change Biology 2020, 27: 84-93. PMID: 33037740, PMCID: PMC7756632, DOI: 10.1111/gcb.15384.Peer-Reviewed Original Research
2019
Global expansion and redistribution of Aedes-borne virus transmission risk with climate change
Ryan S, Carlson C, Mordecai E, Johnson L. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases 2019, 13: e0007213. PMID: 30921321, PMCID: PMC6438455, DOI: 10.1371/journal.pntd.0007213.Peer-Reviewed Original Research
2016
An Ecological Assessment of the Pandemic Threat of Zika Virus
Carlson C, Dougherty E, Getz W. An Ecological Assessment of the Pandemic Threat of Zika Virus. PLOS Neglected Tropical Diseases 2016, 10: e0004968. PMID: 27564232, PMCID: PMC5001720, DOI: 10.1371/journal.pntd.0004968.Peer-Reviewed Original ResearchConceptsEcological niche modelsSignificant evolutionary changeEcological nichesNiche modelsGenetic shiftNative rangeSeasonality of precipitationEvolutionary changesDiurnal temperature fluctuationsEcological assessmentOccurrence datasetNorthward expansionDistribution of dengue feverHuman healthPotential establishmentClimate changeSevere threatVector speciesZika virusOutbreak of Zika virusPathogensClimatic eventsOutbreak of casesNicheNorth America