2004
Inference for the Proportional Hazards Model with Misclassified Discrete‐Valued Covariates
Zucker DM, Spiegelman D. Inference for the Proportional Hazards Model with Misclassified Discrete‐Valued Covariates. Biometrics 2004, 60: 324-334. PMID: 15180657, DOI: 10.1111/j.0006-341x.2004.00176.x.Peer-Reviewed Original Research
1999
Design of Validation Studies for Estimating the Odds Ratio of Exposure–Disease Relationships When Exposure is Misclassified
Holcroft C, Spiegelman D. Design of Validation Studies for Estimating the Odds Ratio of Exposure–Disease Relationships When Exposure is Misclassified. Biometrics 1999, 55: 1193-1201. PMID: 11315067, DOI: 10.1111/j.0006-341x.1999.01193.x.Peer-Reviewed Original ResearchMatrix Methods for Estimating Odds Ratios with Misclassified Exposure Data: Extensions and Comparisons
Morrissey M, Spiegelman D. Matrix Methods for Estimating Odds Ratios with Misclassified Exposure Data: Extensions and Comparisons. Biometrics 1999, 55: 338-344. PMID: 11318185, DOI: 10.1111/j.0006-341x.1999.00338.x.Peer-Reviewed Original Research
1997
Fully parametric and semi-parametric regression models for common events with covariate measurement error in main study/validation study designs.
Spiegelman D, Casella M. Fully parametric and semi-parametric regression models for common events with covariate measurement error in main study/validation study designs. Biometrics 1997, 53: 395-409. PMID: 9192443, DOI: 10.2307/2533945.Peer-Reviewed Original ResearchConceptsMain study/validation study designsSemi-parametric methodMeasurement error modelSemi-parametric estimatesCovariate measurement errorSemi-parametric regression modelEmpirical considerationsTrading efficiencyError modelInference proceedsConvenient mathematical propertiesMeasurement errorLikelihood functionModel choiceJoint likelihood functionValidation study designMisspecificationStandard theoryNonparametric formFamily of modelsImportant biasParametric resultsModel covariatesRegression modelsChoice
1989
Correction of logistic regression relative risk estimates and confidence intervals for systematic within‐person measurement error
Rosner B, Willett WC, Spiegelman D. Correction of logistic regression relative risk estimates and confidence intervals for systematic within‐person measurement error. Statistics In Medicine 1989, 8: 1051-1069. PMID: 2799131, DOI: 10.1002/sim.4780080905.Peer-Reviewed Original ResearchConceptsLikelihood approximation methodApproximation methodLinear approximation methodSecond-order Taylor series expansionTaylor series expansionEstimation of lambdaMeasurement errorCoverage probabilitySeries expansionLikelihood estimationTrue odds ratioSimulation studyPerson measurement errorSystematic errorsRegression coefficientsErrorCoefficient betaCoefficient lambdaEstimationLogistic regression coefficientsLogistic functionEstimatesTrue exposure