Chen F, Wang X, Jang S, Quach B, Weissenkampen J, Khunsriraksakul C, Yang L, Sauteraud R, Albert C, Allred N, Arnett D, Ashley-Koch A, Barnes K, Barr R, Becker D, Bielak L, Bis J, Blangero J, Boorgula M, Chasman D, Chavan S, Chen Y, Chuang L, Correa A, Curran J, David S, Fuentes L, Deka R, Duggirala R, Faul J, Garrett M, Gharib S, Guo X, Hall M, Hawley N, He J, Hobbs B, Hokanson J, Hsiung C, Hwang S, Hyde T, Irvin M, Jaffe A, Johnson E, Kaplan R, Kardia S, Kaufman J, Kelly T, Kleinman J, Kooperberg C, Lee I, Levy D, Lutz S, Manichaikul A, Martin L, Marx O, McGarvey S, Minster R, Moll M, Moussa K, Naseri T, North K, Oelsner E, Peralta J, Peyser P, Psaty B, Rafaels N, Raffield L, Reupena M, Rich S, Rotter J, Schwartz D, Shadyab A, Sheu W, Sims M, Smith J, Sun X, Taylor K, Telen M, Watson H, Weeks D, Weir D, Yanek L, Young K, Young K, Zhao W, Hancock D, Jiang B, Vrieze S, Liu D. Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing. Nature Genetics 2023, 55: 291-300. PMID: 36702996, PMCID: PMC9925385, DOI: 10.1038/s41588-022-01282-x.Peer-Reviewed Original Research