2024
Lymphotoxin
Ruddle N. Lymphotoxin. 2024 DOI: 10.1016/b978-0-128-24465-4.00033-8.Peer-Reviewed Original Research
2020
Basics of Inducible Lymphoid Organs
Ruddle NH. Basics of Inducible Lymphoid Organs. Current Topics In Microbiology And Immunology 2020, 426: 1-19. PMID: 32588229, DOI: 10.1007/82_2020_218.Peer-Reviewed Original ResearchConceptsTertiary lymphoid organsSecondary lymphoid organsLymphoid tissue organizerHigh endothelial venulesLymphoid organsDendritic cellsB cellsEctopic lymphoid organsFollicular dendritic cellsTertiary lymphoid structuresTertiary lymphoid tissueLymph nodesNK cellsChronic inflammationLTi cellsLymphoid structuresTolerance inductionInducer cellsLymphoid tissueEndothelial venulesAntigen presentationT cellsAccumulation of cellsStromal cellsAutoimmunity
2019
Adaptive Immunity: Effector Functions, Regulation, and Vaccination
Kavathas P, Krause P, Ruddle N. Adaptive Immunity: Effector Functions, Regulation, and Vaccination. 2019, 75-95. DOI: 10.1007/978-3-030-25553-4_5.ChaptersAntigen-presenting cellsT cellsB cellsImmune responseInnate cellsEffector cellsInnate antigen-presenting cellsCD4 T helper cellsEffector T cellsB memory cellsT helper cellsSecondary lymphoid organsNaive T cellsBalanced immune responsePathogen-infected host cellsCD4 subsetCytokine milieuHelper cellsLymphoid organsEffector TPlasma cellsEffector functionsAdaptive immuneTypes of pathogensMacrophage responseAdaptive Immunity: Antigen Recognition by T and B Lymphocytes
Kavathas P, Krause P, Ruddle N. Adaptive Immunity: Antigen Recognition by T and B Lymphocytes. 2019, 55-74. DOI: 10.1007/978-3-030-25553-4_4.ChaptersB cell receptorCell receptorMajor histocompatibility complexB lymphocytesKiller T cellsEffective immune responseVariety of antigensT cell receptors (TCRs) bindCentral toleranceT cellsImmune responseHLA proteinsAntigen recognitionHistocompatibility complexIntracellular pathogensCell surfaceReceptorsHLALymphocytesCorresponding antibodiesHost cellsAntibodiesIsotypesMHC systemDefense mechanisms
2014
A Humanized Mouse Model of Autoimmune Insulitis
Milam A, Maher SE, Gibson JA, Lebastchi J, Wen L, Ruddle NH, Herold KC, Bothwell AL. A Humanized Mouse Model of Autoimmune Insulitis. Diabetes 2014, 63: 1712-1724. PMID: 24478396, PMCID: PMC3994947, DOI: 10.2337/db13-1141.Peer-Reviewed Original ResearchConceptsT cellsDiabetic donorsInsulin stainingMouse modelAntigen-pulsed cellsAutoantigen-derived peptidesNOD mouse modelHumanized mouse modelType 1 diabetesPancreatic β-cellsT cell linesHuman T cellsIslet infiltrationAutoimmune diabetesNOD-SCIDAutoimmune insulitisHuman diabetesDestructive infiltrationMouse isletsMechanism of inductionΒ-cellsDiabetesDiabetes researchDisease modelsInsulitis
2012
Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response
Kuerten S, Schickel A, Kerkloh C, Recks MS, Addicks K, Ruddle NH, Lehmann PV. Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathologica 2012, 124: 861-873. PMID: 22842876, DOI: 10.1007/s00401-012-1023-3.Peer-Reviewed Original ResearchConceptsTertiary lymphoid organsExperimental autoimmune encephalomyelitisMyelin-specific T cell responseCentral nervous systemB cell aggregatesT cell responsesMultiple sclerosisB cell aggregationDeterminant spreadingB cellsCell responsesActive immune responseMyelin basic proteinLymphoid neogenesisAutoimmune encephalomyelitisMS patientsAggressive diseaseAutoimmune pathologyPatient populationLymphoid organsDisease onsetDisease progressionT cellsImmune responsePathogenic contribution
2010
The role of AIRE in human autoimmune disease
Akirav EM, Ruddle NH, Herold KC. The role of AIRE in human autoimmune disease. Nature Reviews Endocrinology 2010, 7: 25-33. PMID: 21102544, DOI: 10.1038/nrendo.2010.200.Peer-Reviewed Original Research
2009
Depletion of CD4+CD25+ T cells exacerbates experimental autoimmune encephalomyelitis induced by mouse, but not rat, antigens
Akirav EM, Bergman CM, Hill M, Ruddle NH. Depletion of CD4+CD25+ T cells exacerbates experimental autoimmune encephalomyelitis induced by mouse, but not rat, antigens. Journal Of Neuroscience Research 2009, 87: 3511-3519. PMID: 19125411, PMCID: PMC4429897, DOI: 10.1002/jnr.21981.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigensAutoantigensAutoimmunityBiomarkersCD4 AntigensCD4-Positive T-LymphocytesCells, CulturedCentral Nervous SystemChemotaxis, LeukocyteDisease Models, AnimalEncephalomyelitis, Autoimmune, ExperimentalFemaleInterferon-gammaInterleukin-10Interleukin-17Interleukin-2 Receptor alpha SubunitLymphocyte ActivationMiceMice, Inbred C57BLMultiple SclerosisMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinRatsT-Lymphocytes, RegulatoryConceptsExperimental autoimmune encephalomyelitisMyelin oligodendrocyte glycoproteinAutoimmune encephalomyelitisT cellsIL-10-producing cellsRegulatory T cellsTissue-restricted antigensCentral nervous systemField of autoimmunityT cell activationTreg depletionEAE severitySelf antigensOligodendrocyte glycoproteinForeign antigensExperimental diseaseNervous systemRelated antigensMiceSelf-antigen specificityAntigenTregsEncephalomyelitisAutoimmunityRats
2007
Regulatory T cells selectively protect against experimental autoimmune encephalomyelitis induced with self but not foreign antigens (B79)
Akirav E, Xu Y, Bergman C, Hill M, Ruddle N. Regulatory T cells selectively protect against experimental autoimmune encephalomyelitis induced with self but not foreign antigens (B79). The Journal Of Immunology 2007, 178: lb16-lb17. DOI: 10.4049/jimmunol.178.supp.b79.Peer-Reviewed Original ResearchMouse myelin oligodendrocyte glycoproteinExperimental autoimmune encephalomyelitisMyelin oligodendrocyte glycoproteinRegulatory T cellsTreg depletionT cellsAutoimmune encephalomyelitisMultiple sclerosisHuman myelin oligodendrocyte glycoproteinRatio of IFNγT cell responsesT cell proliferationCentral nervous systemEAE severityMOG35-55IL17 productionAutoimmune diseasesOligodendrocyte glycoproteinForeign antigensMurine modelNervous systemRelated antigensDisease severityCell responsesMiceTertiary Lymphoid Tissues Generate Effector and Memory T Cells That Lead to Allograft Rejection
Nasr IW, Reel M, Oberbarnscheidt MH, Mounzer RH, Baddoura FK, Ruddle NH, Lakkis FG. Tertiary Lymphoid Tissues Generate Effector and Memory T Cells That Lead to Allograft Rejection. American Journal Of Transplantation 2007, 7: 1071-1079. PMID: 17359505, DOI: 10.1111/j.1600-6143.2007.01756.x.Peer-Reviewed Original ResearchConceptsTertiary lymphoid tissueWild-type allograftsMemory T cellsSecondary lymphoid organsLymphoid tissueT cellsLymphoid organsRejection processPrimary alloimmune responsesSyngeneic graft recipientsMemory immune responsesNaïve T cell activationTertiary lymphoid structuresNaive T cellsT cell activationMurine transplantation modelChronic rejectionAllograft rejectionGraft recipientsAlloimmune responseLymphoid structuresChronic inflammationSkin allograftsNaïve lymphocytesTransplantation model
2006
Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid
Marinkovic T, Garin A, Yokota Y, Fu Y, Ruddle N, Furtado G, Lira S. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. Journal Of Clinical Investigation 2006, 116: 2622-2632. DOI: 10.1172/jci28993..Peer-Reviewed Original ResearchInteraction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid
Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. Journal Of Clinical Investigation 2006, 116: 2622-2632. PMID: 16998590, PMCID: PMC1570377, DOI: 10.1172/jci28993.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsB-LymphocytesCD3 ComplexCD4-Positive T-LymphocytesCell Adhesion MoleculesCell CommunicationCell MovementChemokine CCL21ChemokinesChemokines, CCDendritic CellsDNA-Binding ProteinsGene ExpressionGreen Fluorescent ProteinsInhibitor of Differentiation Protein 2Lymphoid TissueLymphotoxin-alphaMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicReceptors, CCR7Receptors, ChemokineThyroid DiseasesThyroid Gland
2003
Rat and Human Myelin Oligodendrocyte Glycoproteins Induce Experimental Autoimmune Encephalomyelitis by Different Mechanisms in C57BL/6 Mice
Oliver AR, Lyon GM, Ruddle NH. Rat and Human Myelin Oligodendrocyte Glycoproteins Induce Experimental Autoimmune Encephalomyelitis by Different Mechanisms in C57BL/6 Mice. The Journal Of Immunology 2003, 171: 462-468. PMID: 12817031, DOI: 10.4049/jimmunol.171.1.462.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntigen PresentationAutoantibodiesB-LymphocytesCell MovementDose-Response Relationship, ImmunologicEncephalomyelitis, Autoimmune, ExperimentalFemaleGlycoproteinsHumansImmunoglobulin GInjections, IntramuscularInterferon-gammaInterleukin-13MiceMice, Inbred C57BLMice, Mutant StrainsMolecular Sequence DataMyelin-Oligodendrocyte GlycoproteinPeptide FragmentsRatsSpecies SpecificitySpinal CordConceptsExperimental autoimmune encephalomyelitisMyelin oligodendrocyte glycoproteinRat myelin oligodendrocyte glycoproteinHuman myelin oligodendrocyte glycoproteinMOG 35C57BL/6 miceMOG proteinAutoimmune encephalomyelitisOligodendrocyte glycoproteinB cellsCell responsesEncephalitogenic T cell responsesB cell-deficient miceB cell dependenceCell-deficient miceT cell responsesB cell responsesDifferent pathogenic mechanismsCNS infiltratesIL-13T cellsSpleen cellsIFN-gammaIgG subclassesAg presentationHelicobacter-Induced Chronic Active Lymphoid Aggregates Have Characteristics of Tertiary Lymphoid Tissue
Shomer NH, Fox JG, Juedes AE, Ruddle NH. Helicobacter-Induced Chronic Active Lymphoid Aggregates Have Characteristics of Tertiary Lymphoid Tissue. Infection And Immunity 2003, 71: 3572-3577. PMID: 12761142, PMCID: PMC155770, DOI: 10.1128/iai.71.6.3572-3577.2003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen PresentationAntigens, SurfaceAutoimmunityCell Adhesion MoleculesCell AggregationChemokine CCL21Chemokine CXCL13Chemokines, CCChemokines, CXCHelicobacter InfectionsHepatitis, ChronicImmunoglobulinsLiverLymphoid TissueMembrane ProteinsMiceMucoproteinsVascular Cell Adhesion Molecule-1ConceptsChronic active hepatitisTertiary lymphoid organsLymphoid organsActive hepatitisInflammatory lesionsHepatic inflammatory lesionsMucosal addressin cell adhesion moleculeTertiary lymphoid tissuePeripheral node addressinLiver cell suspensionsLiver tissue sectionsB220-positive B cellsChemokines SLCHepatic inflammationInflammatory infiltrateChronic autoimmunityLymphoid aggregatesLymphoid tissueFluorescence-activated cell sortingT cellsCell adhesion moleculeB cellsStromal cellsSmall venulesAdhesion molecules
2002
Role of Lymphotoxin α in T-Cell Responses during an Acute Viral Infection
Suresh M, Lanier G, Large MK, Whitmire JK, Altman JD, Ruddle NH, Ahmed R. Role of Lymphotoxin α in T-Cell Responses during an Acute Viral Infection. Journal Of Virology 2002, 76: 3943-3951. PMID: 11907234, PMCID: PMC136110, DOI: 10.1128/jvi.76.8.3943-3951.2002.Peer-Reviewed Original ResearchConceptsT cell responsesCD8 T cellsLymphocytic choriomeningitis virusT cellsT cell activationLymphoid architectureMajor histocompatibility complex class I tetramersVirus-specific CD8 T cell responsesLCMV-specific CD8 T cellsLCMV-specific T-cell responsesVirus-specific CD8 T cellsAntigen-specific T cell responsesCD8 T cell responsesLCMV-specific T cellsT cell-mediated immunopathologyLTalpha-deficient miceClass I tetramersAcute viral infectionCD4 T cellsAdoptive transfer experimentsCell transfer experimentsLCMV clearanceNonlymphoid organsAdoptive transferAcute infection
2001
Resident and Infiltrating Central Nervous System APCs Regulate the Emergence and Resolution of Experimental Autoimmune Encephalomyelitis
Juedes A, Ruddle N. Resident and Infiltrating Central Nervous System APCs Regulate the Emergence and Resolution of Experimental Autoimmune Encephalomyelitis. The Journal Of Immunology 2001, 166: 5168-5175. PMID: 11290800, DOI: 10.4049/jimmunol.166.8.5168.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntigen PresentationAntigen-Presenting CellsB7-1 AntigenBrainCell LineCell MovementDown-RegulationEncephalomyelitis, Autoimmune, ExperimentalFemaleGrowth InhibitorsHistocompatibility Antigens Class IHistocompatibility Antigens Class IILymphocyte ActivationMacromolecular SubstancesMacrophagesMiceMice, Inbred C57BLMice, KnockoutMicrogliaMolecular Sequence DataMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNitric OxideSpinal CordT-LymphocytesConceptsExperimental autoimmune encephalomyelitisT cell proliferationT cellsT cell linesCNS APCCNS APCsAutoimmune encephalomyelitisMHC-IITarget organsInducible NO synthase-deficient miceT cell cytokine productionTh1 T cellsAutoreactive T cellsCell cytokine productionIFN-gamma productionB7-1 expressionSynthase-deficient miceCell proliferationMac-1 cellsCell linesInitiation of diseaseProduction of NOResident microgliaMyelin oligodendrocyteCytokine productionICOS co-stimulatory receptor is essential for T-cell activation and function
Dong C, Juedes A, Temann U, Shresta S, Allison J, Ruddle N, Flavell R. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 2001, 409: 97-101. PMID: 11343121, DOI: 10.1038/35051100.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibody FormationAntigens, CDAntigens, Differentiation, T-LymphocyteCell DifferentiationCells, CulturedEncephalomyelitis, Autoimmune, ExperimentalGene TargetingHemocyaninsInducible T-Cell Co-Stimulator ProteinInterleukin-13Interleukin-4Lymph NodesLymphocyte ActivationMiceMice, KnockoutMolecular Sequence DataMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinT-LymphocytesConceptsInducible co-stimulatory moleculeT cell activationCo-stimulatory moleculesT cellsICOS-/- miceICOS-deficient miceInflammatory autoimmune diseaseExperimental autoimmune encephalomyelitisInjection of lipopolysaccharideCo-stimulatory receptorsHumoral immune responseNon-immune tissuesT lymphocyte activationAutoimmune encephalomyelitisAutoimmune diseasesImmune responseInterleukin-4Immune functionCD28/CTLA4 familyB cellsProtective roleEnhanced susceptibilityActivationReceptorsHigh affinity
2000
Lymphotoxin in inflammation and lymphoid organ development: Variations on a theme
Ruddle N. Lymphotoxin in inflammation and lymphoid organ development: Variations on a theme. Progress In Inflammation Research 2000, 83-88. DOI: 10.1007/978-3-0348-8468-6_8.Peer-Reviewed Original ResearchAutoimmune diseasesLymphoid organsLymphoid organ developmentT cellsTarget organsAntigen-specific T cellsAdditional T cellsLocal lymphoid organsTertiary lymphoid organsConsequence of inflammationLymphoid neogenesisClinical relapseAutoimmune inflammationLocal target organLymphoid tissueInflammatory reactionB cellsInflammationTransgenic miceTissue damageDiseaseTNF familyOrgansUnrelated moleculesOrgan developmentKinetics and Cellular Origin of Cytokines in the Central Nervous System: Insight into Mechanisms of Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis
Juedes A, Hjelmström P, Bergman C, Neild A, Ruddle N. Kinetics and Cellular Origin of Cytokines in the Central Nervous System: Insight into Mechanisms of Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis. The Journal Of Immunology 2000, 164: 419-426. PMID: 10605038, DOI: 10.4049/jimmunol.164.1.419.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCentral Nervous SystemChemokinesCytokinesEncephalomyelitis, Autoimmune, ExperimentalFemaleImmunophenotypingInflammation MediatorsInjections, SubcutaneousInterferon-gammaKineticsLymphocyte ActivationMacrophagesMiceMice, Inbred C57BLMicrogliaMolecular Sequence DataMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinSpleenTh1 CellsTh2 CellsTumor Necrosis Factor-alphaConceptsMyelin oligodendrocyte glycoproteinExperimental autoimmune encephalomyelitisAutoimmune encephalomyelitisOligodendrocyte glycoproteinTNF-alphaT cellsDay 7IFN-inducible protein-10TNF-alpha-producing cellsMonocyte chemotactic protein-1MOG35-55 peptideChronic clinical courseAnti-inflammatory cytokinesCD4 T cellsCourse of diseaseChemotactic protein-1Sensitive single-cell assayCellular originTNF-alpha productionRecruitment of macrophagesCentral nervous systemMOG35-55Clinical courseTh1 cytokinesTh2 cytokines
1997
Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection.
Soong L, Chang CH, Sun J, Longley BJ, Ruddle NH, Flavell RA, McMahon-Pratt D. Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. The Journal Of Immunology 1997, 158: 5374-83. PMID: 9164958, DOI: 10.4049/jimmunol.158.11.5374.Peer-Reviewed Original ResearchConceptsII-/- miceLeishmania amazonensis infectionRag2-/- miceT cellsAmazonensis infectionMHC classL. amazonensis-infected miceWild-type C57BL/6 miceLarge ulcerating lesionsMonocytes/granulocytesRole of CD4Course of infectionMonocytes/macrophagesStrains of miceMHC class IWild-type CD4T cell developmentUlcerating lesionFunctional CD4Lymphocyte subsetsC57BL/6 miceTh1 cellsInflammatory responseLesion pathologyImmune response