2019
Immunotherapy for Infectious Diseases, Cancer, and Autoimmunity
Krause P, Kavathas P, Ruddle N. Immunotherapy for Infectious Diseases, Cancer, and Autoimmunity. 2019, 265-276. DOI: 10.1007/978-3-030-25553-4_16.ChaptersSubset of patientsMonoclonal antibodiesSide effectsAutoimmune side effectsRespiratory syncytial virusMinimal side effectsInitial unresponsivenessCheckpoint inhibitorsAdverse eventsField of immunologyCheckpoint inhibitionTreatment failureCytokine inhibitorsSyncytial virusAutoimmune diseasesCancer immunotherapyInhibitory receptorsLate toleranceLung cancerImmune cellsPassive transferImmune regulationImmune responseImmunotherapyLatent infectionAdaptive Immunity: Effector Functions, Regulation, and Vaccination
Kavathas P, Krause P, Ruddle N. Adaptive Immunity: Effector Functions, Regulation, and Vaccination. 2019, 75-95. DOI: 10.1007/978-3-030-25553-4_5.ChaptersAntigen-presenting cellsT cellsB cellsImmune responseInnate cellsEffector cellsInnate antigen-presenting cellsCD4 T helper cellsEffector T cellsB memory cellsT helper cellsSecondary lymphoid organsNaive T cellsBalanced immune responsePathogen-infected host cellsCD4 subsetCytokine milieuHelper cellsLymphoid organsEffector TPlasma cellsEffector functionsAdaptive immuneTypes of pathogensMacrophage responseAdaptive Immunity: Antigen Recognition by T and B Lymphocytes
Kavathas P, Krause P, Ruddle N. Adaptive Immunity: Antigen Recognition by T and B Lymphocytes. 2019, 55-74. DOI: 10.1007/978-3-030-25553-4_4.ChaptersB cell receptorCell receptorMajor histocompatibility complexB lymphocytesKiller T cellsEffective immune responseVariety of antigensT cell receptors (TCRs) bindCentral toleranceT cellsImmune responseHLA proteinsAntigen recognitionHistocompatibility complexIntracellular pathogensCell surfaceReceptorsHLALymphocytesCorresponding antibodiesHost cellsAntibodiesIsotypesMHC systemDefense mechanismsImmunoepidemiology of Selected Components of the Innate and Adaptive Immune Systems
Ruddle N, Kavathas P. Immunoepidemiology of Selected Components of the Innate and Adaptive Immune Systems. 2019, 111-125. DOI: 10.1007/978-3-030-25553-4_7.Peer-Reviewed Original ResearchKiller cell immunoglobulin-like receptorsPattern recognition receptorsT cell receptorMajor histocompatibility complexImmune systemSingle nucleotide polymorphismsImmunoglobulin-like receptorsAdaptive immune systemImmune responseRecognition receptorsPresence of polymorphismsCell receptorHistocompatibility complexGenetic polymorphismsReceptorsSelective survivalPolymorphismApparent effectMultiple microorganismsPregnancyChemokinesCytokinesImmunoepidemiologyInfectionInnateDisorders of the Immune System
Kavathas P, Krause P, Ruddle N. Disorders of the Immune System. 2019, 97-107. DOI: 10.1007/978-3-030-25553-4_6.ChaptersImmune systemImmune dysregulationHypersensitivity reactionsRegulation of autoimmunityMajor health problemHuman immune systemNumber of PIDsAllergic reactionsClinical impactAutoinflammatory diseasesForeign antigensImmune responseImmunodeficiency diseaseImmune functionHealth problemsNongenetic causesAutoimmunityHarmful responsesInborn errorsDiseaseType of disorderGenetic defectsImmunodeficiencyInfectionPredominant featureIntroduction to Immunology, Epidemiology, and Immunoepidemiology
Niccolai L, Ruddle N, Krause P. Introduction to Immunology, Epidemiology, and Immunoepidemiology. 2019, 3-17. DOI: 10.1007/978-3-030-25553-4_1.ChaptersIndividual multicellular organismsImmune responseMulticellular organismsRelevant health problemHealth-related eventsInflammatory diseasesSelect populationCombination of cellsHealth problemsEpidemiologic toolImmunoepidemiologyMicrobial infectionsEpidemiologyGenetic polymorphismsImmunologyEnvironmental factorsPopulationAutoimmunityMalignancyOrganismsInfectionDiversityDiseaseStudy
2016
Lymphotoxin
Ruddle N. Lymphotoxin. 2016, 466-475. DOI: 10.1016/b978-0-12-374279-7.10003-7.Peer-Reviewed Original ResearchTumor necrosis factorNFκB pathwayChronic inflammatory infiltrateAlternative NFκB pathwayMajor histocompatibility complexLymph nodesInflammatory infiltrateChemokine expressionChronic inflammationLymphoid organsNecrosis factorImmune responseCanonical NFκB pathwaySpecific antigenTNF receptorLymphotoxinLTβ receptorHistocompatibility complexTNF familyCulture supernatantsEmbryological developmentLymphocytesLTαCytotoxic activityReceptorsTertiary Lymphoid Tissues
Ruddle N. Tertiary Lymphoid Tissues. 2016, 480-485. DOI: 10.1016/b978-0-12-374279-7.07012-0.Peer-Reviewed Original ResearchTertiary lymphoid organsTertiary lymphoid tissueSecondary lymphoid organsLymphoid organsLymphoid tissueConventional lymphoid organsChronic graft rejectionHigh endothelial venulesChronic microbial infectionsStromal cellular compositionAntigen primingNonlymphoid organsGraft rejectionDeterminant spreadingLymph nodesChronic inflammationEndothelial venulesClinical diseaseImmune responseInfectious organismsMicrobial infectionsCellular compositionLymphatic vesselsEctopic sitesAutoimmunity
2015
A Dendritic-Cell-Stromal Axis Maintains Immune Responses in Lymph Nodes
Kumar V, Dasoveanu DC, Chyou S, Tzeng TC, Rozo C, Liang Y, Stohl W, Fu YX, Ruddle NH, Lu TT. A Dendritic-Cell-Stromal Axis Maintains Immune Responses in Lymph Nodes. Immunity 2015, 42: 719-730. PMID: 25902483, PMCID: PMC4591553, DOI: 10.1016/j.immuni.2015.03.015.Peer-Reviewed Original ResearchConceptsDendritic cellsImmune responseReticular cellsLymph nodesFunction of DCsOngoing immune responseCell survivalSecondary lymphoid tissuesBeta-receptor ligandsStromal reticular cellsPathogenic lymphocytesLymphoproliferative diseaseLymphocyte functionLymphoid tissueLymphocyte survivalCritical mediatorPodoplaninReceptor ligandsCell functionSurvivalLTβRDiseasePotential strategyCellsResponse
2013
Identification of a New Stromal Cell Type Involved in the Regulation of Inflamed B Cell Follicles
Mionnet C, Mondor I, Jorquera A, Loosveld M, Maurizio J, Arcangeli ML, Ruddle NH, Nowak J, Aurrand-Lions M, Luche H, Bajénoff M. Identification of a New Stromal Cell Type Involved in the Regulation of Inflamed B Cell Follicles. PLOS Biology 2013, 11: e1001672. PMID: 24130458, PMCID: PMC3794863, DOI: 10.1371/journal.pbio.1001672.Peer-Reviewed Original ResearchConceptsStromal cell typesB cell folliclesT cell zonesCell typesFate-mapping systemStromal cellsCellular demandB cellsLymph Node Stromal CellsSurvival signalsStromal cell subsetsB cell ablationLN stromal cellsCell zoneAdhesive substrataCell ablationCell subsetsImmune responseCellsFolliclesInflammationSubstrataRegulationTransient boundaryLymphocytesLymphatic Vessel Function in Head and Neck Inflammation
Truman LA, A-Gonzalez N, Bentley KL, Ruddle NH. Lymphatic Vessel Function in Head and Neck Inflammation. Lymphatic Research And Biology 2013, 11: 187-192. PMID: 24044758, PMCID: PMC3780307, DOI: 10.1089/lrb.2013.0013.Peer-Reviewed Original ResearchConceptsIndividual lymphatic endothelial cellsLymphatic endothelial cellsRed fluorescent reporterEndothelial cellsLymphatic vesselsTranscription factorsRegulatory elementsFaithful expressionProx1 expressionLymphatic vessel functionSingle cellsReporter miceLymphangiogenesisTd-TomatoJackson LaboratoryCellsVivoTdTomatoExpressionProx1TransgeneReporterImmune responseVessel functionMice
2012
Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response
Kuerten S, Schickel A, Kerkloh C, Recks MS, Addicks K, Ruddle NH, Lehmann PV. Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathologica 2012, 124: 861-873. PMID: 22842876, DOI: 10.1007/s00401-012-1023-3.Peer-Reviewed Original ResearchConceptsTertiary lymphoid organsExperimental autoimmune encephalomyelitisMyelin-specific T cell responseCentral nervous systemB cell aggregatesT cell responsesMultiple sclerosisB cell aggregationDeterminant spreadingB cellsCell responsesActive immune responseMyelin basic proteinLymphoid neogenesisAutoimmune encephalomyelitisMS patientsAggressive diseaseAutoimmune pathologyPatient populationLymphoid organsDisease onsetDisease progressionT cellsImmune responsePathogenic contribution
2011
Impaired lymphatic contraction associated with immunosuppression
Liao S, Cheng G, Conner DA, Huang Y, Kucherlapati RS, Munn LL, Ruddle NH, Jain RK, Fukumura D, Padera TP. Impaired lymphatic contraction associated with immunosuppression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 18784-18789. PMID: 22065738, PMCID: PMC3219138, DOI: 10.1073/pnas.1116152108.Peer-Reviewed Original ResearchConceptsEndothelial nitric oxide synthaseLymphatic contractionsLymphatic functionImmune responseAntigen-presenting cellsNitric oxide synthaseEffective immune responseUnique mouse modelLymphatic vessel contractionLymphatic vessel functionLymph nodesAutoreactive responsesMultiple sclerosisVessel contractionInflammatory conditionsInducible NOSOxide synthaseMouse modelLymphatic metastasisVessel functionLymphatic endothelial cellsNitric oxideEndothelial cellsIntravital imagingPotential mechanisms
2009
Secondary Lymphoid Organs: Responding to Genetic and Environmental Cues in Ontogeny and the Immune Response
Ruddle NH, Akirav EM. Secondary Lymphoid Organs: Responding to Genetic and Environmental Cues in Ontogeny and the Immune Response. The Journal Of Immunology 2009, 183: 2205-2212. PMID: 19661265, PMCID: PMC2766168, DOI: 10.4049/jimmunol.0804324.Peer-Reviewed Original ResearchConceptsSecondary lymphoid organsLymphoid tissueLymphoid organsImmune responseLymphoid tissue organizer cellsBronchus-associated lymphoid tissueLymphoid tissue inducerTertiary lymphoid tissueSLO developmentLymphoid chemokinesIL-17Lymph nodesLymphoid folliclesPeyer's patchesIL-7Crucial cytokineMucosal tissuesOrganizer cellsCellular accumulationCytokinesTissueOrgansEnvironmental cuesCryptopatchesAdenoids
2001
Lymphotoxin-alpha deficiency completely protects C57BL/6 mice from developing clinical experimental autoimmune myasthenia gravis
Goluszko E, Hjelmström P, Deng C, Poussin M, Ruddle N, Christadoss P. Lymphotoxin-alpha deficiency completely protects C57BL/6 mice from developing clinical experimental autoimmune myasthenia gravis. Journal Of Neuroimmunology 2001, 113: 109-118. PMID: 11137582, DOI: 10.1016/s0165-5728(00)00420-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAutoantibodiesB7-2 AntigenGene ExpressionImmunodominant EpitopesImmunoglobulin GImmunoglobulin MLymphotoxin-alphaMembrane GlycoproteinsMiceMice, Inbred C57BLMice, KnockoutMyasthenia Gravis, Autoimmune, ExperimentalReceptors, CholinergicReceptors, Tumor Necrosis FactorSpleenConceptsExperimental autoimmune myasthenia gravisClinical experimental autoimmune myasthenia gravisAutoimmune myasthenia gravisMyasthenia gravisMean titersPrimary humoral immune responseAlpha-deficient miceAnti-AChR antibodiesHumoral immune responseLower mean titersC57BL/6 miceImmunized miceTotal IgGDeficient miceIgG isotypeImmune responseAcetylcholine receptorsPartial preventionGravisMiceComplete preventionTitersLtPreventionPathogenesisICOS co-stimulatory receptor is essential for T-cell activation and function
Dong C, Juedes A, Temann U, Shresta S, Allison J, Ruddle N, Flavell R. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 2001, 409: 97-101. PMID: 11343121, DOI: 10.1038/35051100.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibody FormationAntigens, CDAntigens, Differentiation, T-LymphocyteCell DifferentiationCells, CulturedEncephalomyelitis, Autoimmune, ExperimentalGene TargetingHemocyaninsInducible T-Cell Co-Stimulator ProteinInterleukin-13Interleukin-4Lymph NodesLymphocyte ActivationMiceMice, KnockoutMolecular Sequence DataMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinT-LymphocytesConceptsInducible co-stimulatory moleculeT cell activationCo-stimulatory moleculesT cellsICOS-/- miceICOS-deficient miceInflammatory autoimmune diseaseExperimental autoimmune encephalomyelitisInjection of lipopolysaccharideCo-stimulatory receptorsHumoral immune responseNon-immune tissuesT lymphocyte activationAutoimmune encephalomyelitisAutoimmune diseasesImmune responseInterleukin-4Immune functionCD28/CTLA4 familyB cellsProtective roleEnhanced susceptibilityActivationReceptorsHigh affinity
1997
Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection.
Soong L, Chang CH, Sun J, Longley BJ, Ruddle NH, Flavell RA, McMahon-Pratt D. Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection. The Journal Of Immunology 1997, 158: 5374-83. PMID: 9164958, DOI: 10.4049/jimmunol.158.11.5374.Peer-Reviewed Original ResearchConceptsII-/- miceLeishmania amazonensis infectionRag2-/- miceT cellsAmazonensis infectionMHC classL. amazonensis-infected miceWild-type C57BL/6 miceLarge ulcerating lesionsMonocytes/granulocytesRole of CD4Course of infectionMonocytes/macrophagesStrains of miceMHC class IWild-type CD4T cell developmentUlcerating lesionFunctional CD4Lymphocyte subsetsC57BL/6 miceTh1 cellsInflammatory responseLesion pathologyImmune responseLYMPHOTOXIN-β AND TNF REGULATION IN T CELL SUBSETS: DIFFERENTIAL EFFECTS OF PGE2
Ferreri N, Millet I, Askari B, Magnani P, Ruddle N. LYMPHOTOXIN-β AND TNF REGULATION IN T CELL SUBSETS: DIFFERENTIAL EFFECTS OF PGE2. Cytokine 1997, 9: 157-165. PMID: 9126704, DOI: 10.1006/cyto.1996.0150.Peer-Reviewed Original ResearchConceptsT cell subsetsTumor necrosis factor alphaCell subsetsTNF mRNA accumulationProstaglandin E2Th2 cellsLT-betaCytokine productionTh1 cellsIL-3Effect of PGE2IL-4 mRNANecrosis factor alphaTh2 T cell clonesT cell clonesTh2 T cellsLT-beta mRNAOnly cytokineIL-4Factor alphaT cellsTNF regulationImmune responseInterleukin-4Lymphotoxin beta
1996
Disruption of CD40–CD40 Ligand Interactions Results in an Enhanced Susceptibility to Leishmania amazonensis Infection
Soong L, Xu J, Grewal I, Kima P, Sun J, Longley B, Ruddle N, McMahon-Pratt D, Flavell R. Disruption of CD40–CD40 Ligand Interactions Results in an Enhanced Susceptibility to Leishmania amazonensis Infection. Immunity 1996, 4: 263-273. PMID: 8624816, DOI: 10.1016/s1074-7613(00)80434-3.Peer-Reviewed Original ResearchConceptsCD40L-/- miceImmune responseCD40-CD40 ligand interactionCD40L knockout miceLeishmania amazonensis infectionProgressive ulcerative lesionTissue parasite burdenCD40-CD40L interactionCellular immune responsesProtective immune responseWild-type miceHost immune responseImpaired T cellNitric oxide productionAmazonensis infectionUlcerative lesionsInflammatory responseNecrosis factorCD40 ligandT cellsIFN-gammaKnockout miceMacrophage activationParasite burdenOxide production
1992
Insulitis in transgenic mice expressing tumor necrosis factor beta (lymphotoxin) in the pancreas.
Picarella DE, Kratz A, Li CB, Ruddle NH, Flavell RA. Insulitis in transgenic mice expressing tumor necrosis factor beta (lymphotoxin) in the pancreas. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 10036-10040. PMID: 1279667, PMCID: PMC50272, DOI: 10.1073/pnas.89.21.10036.Peer-Reviewed Original ResearchConceptsNecrosis factor betaTransgenic miceFactor betaInsulin-dependent diabetes mellitusRat insulin II promoterTumor necrosis factor betaType 1 diabetesRegulation of inflammationTNF-beta geneDiabetes mellitusInflammatory infiltrateInflammatory diseasesT cellsImmune responseB cellsInsulitisDiabetesMicePancreasImportant early stepBetaEarly stagesCD8InfiltratesMellitus