Structural Basis for Toxin Resistance of β4-Associated Calcium-activated Potassium (BK) Channels*
Gan G, Yi H, Chen M, Sun L, Li W, Wu Y, Ding J. Structural Basis for Toxin Resistance of β4-Associated Calcium-activated Potassium (BK) Channels*. Journal Of Biological Chemistry 2008, 283: 24177-24184. PMID: 18559348, PMCID: PMC3259794, DOI: 10.1074/jbc.m800179200.Peer-Reviewed Original ResearchMeSH KeywordsCell LineCharybdotoxinHumansLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsLarge-Conductance Calcium-Activated Potassium Channel beta SubunitsMutagenesis, InsertionalMutationNeurotoxinsProtein BindingProtein Structure, QuaternaryStatic ElectricityConceptsAlpha subunitBeta subunitStructural basisWide open conformationAuxiliary beta subunitsFunctional diversityInternal binding siteToxin resistanceBasic residuesOpen conformationChannel poreSubunitsDiverse interactionsBinding sitesLarge conductancePotassium channelsMSloChannel inhibitorsMutantsDiversityResiduesSitesBetter understandingInteractionLysine-Rich Extracellular Rings Formed by hβ2 Subunits Confer the Outward Rectification of BK Channels
Chen M, Gan G, Wu Y, Wang L, Wu Y, Ding J. Lysine-Rich Extracellular Rings Formed by hβ2 Subunits Confer the Outward Rectification of BK Channels. PLOS ONE 2008, 3: e2114. PMID: 18461166, PMCID: PMC2346552, DOI: 10.1371/journal.pone.0002114.Peer-Reviewed Original ResearchAmino Acid SequenceAnimalsCalciumCharybdotoxinEpitopesLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsLarge-Conductance Calcium-Activated Potassium Channel beta SubunitsLarge-Conductance Calcium-Activated Potassium ChannelsLysinePatch-Clamp TechniquesPeptide FragmentsPotassiumProtein SubunitsStatic Electricity