2024
Evaluating analytic models for individually randomized group treatment trials with complex clustering in nested and crossed designs
Moyer J, Li F, Cook A, Heagerty P, Pals S, Turner E, Wang R, Zhou Y, Yu Q, Wang X, Murray D. Evaluating analytic models for individually randomized group treatment trials with complex clustering in nested and crossed designs. Statistics In Medicine 2024, 43: 4796-4818. PMID: 39225281, DOI: 10.1002/sim.10206.Peer-Reviewed Original ResearchGroup treatmentRandomized group treatment trialsTreatment trialsDeliver treatmentNominal type I error rateData generating mechanismRating inflationType I error rateMultiple membershipsType I error rate inflationParticipantsAgent settingMultiple agentsOutcome measuresSingle agent settingTrial armsSimulation studyStudy designTherapistsStudy armsEvaluate analytical modelsContinuous outcomesMaintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures
Ouyang Y, Taljaard M, Forbes A, Li F. Maintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures. Statistical Methods In Medical Research 2024, 33: 1497-1516. PMID: 38807552, PMCID: PMC11499024, DOI: 10.1177/09622802241248382.Peer-Reviewed Original ResearchRandom effects structureVariance estimationComplex correlation structureRobust variance estimationFixed effects parametersDegrees of freedom correctionCluster randomized trialEstimates of standard errorsCorrelation structureRandom effectsStepped-wedge cluster randomized trialComprehensive simulation studyLinear mixed modelsStatistical inferenceRandom intercept modelSimulation studyMixed modelsMisspecificationValidity of inferencesRandom interceptContinuous outcomesEstimationComputational challengesIntercept modelStandard errorAssessing treatment effect heterogeneity in the presence of missing effect modifier data in cluster-randomized trials
Blette B, Halpern S, Li F, Harhay M. Assessing treatment effect heterogeneity in the presence of missing effect modifier data in cluster-randomized trials. Statistical Methods In Medical Research 2024, 33: 909-927. PMID: 38567439, PMCID: PMC11041086, DOI: 10.1177/09622802241242323.Peer-Reviewed Original ResearchConceptsMultilevel multiple imputationHeterogeneous treatment effectsCluster randomized trialPotential effect modifiersMultiple imputationAssess treatment effect heterogeneityEffect modifiersTreatment effect heterogeneityComplete-case analysisMissingness mechanismIntracluster correlationSimulation studyUnder-coverageRandomized trialsEffect heterogeneityHealth StudyTreatment effectsContinuous outcomesClinical practiceImputationModel specificationMissingnessData methodsModified dataTrialsTransporting randomized trial results to estimate counterfactual survival functions in target populations
Cao Z, Cho Y, Li F. Transporting randomized trial results to estimate counterfactual survival functions in target populations. Pharmaceutical Statistics 2024, 23: 442-465. PMID: 38233102, DOI: 10.1002/pst.2354.Peer-Reviewed Original ResearchSurvival functionFinite-sample performanceSample average treatment effectApproximate variance estimatorsIncorrect model specificationAverage treatment effectRight censoringDistributions of treatment effect modifiersVariance estimationInverse probability weightingSimulation studyRobust estimationComplex surveysAverage treatmentProbability weightingTreatment effect modifiersEstimationTreatment effectsModel specificationCensoringTarget populationDifferential distributionSurvey weightsEffect modifiersFunctionModel-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments
Wang B, Park C, Small D, Li F. Model-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments. Journal Of The American Statistical Association 2024, ahead-of-print: 1-13. DOI: 10.1080/01621459.2023.2289693.Peer-Reviewed Original ResearchCluster-randomized experimentCluster size variationNuisance functionsParametric working modelsFlexible covariate adjustmentCovariate-adjusted estimatesCovariate adjustment methodsCovariate adjustmentModel-based covariate adjustmentEfficient estimationSimulation studyRobust inferenceSupplementary materialsEstimandsEstimating equationsModel-based estimatesG-computationCluster averagesEstimationTreatment assignmentRoutine practice conditionsRisk of biasEquationsTreatment effectsCovariates
2023
Competing risks regression for clustered survival data via the marginal additive subdistribution hazards model
Chen X, Esserman D, Li F. Competing risks regression for clustered survival data via the marginal additive subdistribution hazards model. Statistica Neerlandica 2023, 78: 281-301. DOI: 10.1111/stan.12317.Peer-Reviewed Original ResearchSandwich variance estimatorCorrelated failure time dataVariance estimatorUnknown dependency structureFailure time dataAdditive hazards modelFinite samplesEquation approachCensoring timeCorrelation structureAdditive structureDependent censoringFit testSimulation studyEvent of interestDependency structureFailure timeEstimatorSubdistribution hazardRegression coefficientsIncidence functionCumulative incidence functionSubdistribution hazard modelTime dataOverall modelORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals
Meng C, Ryan M, Rathouz P, Turner E, Preisser J, Li F. ORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals. Computer Methods And Programs In Biomedicine 2023, 237: 107567. PMID: 37207384, DOI: 10.1016/j.cmpb.2023.107567.Peer-Reviewed Original ResearchConceptsOrdinal outcomesSandwich estimatorR packageSimulation studyCorrelated ordinal dataFinite sample biasesNumber of clustersCovariance estimationMarginal modelsEquationsParameter estimatesOrdinal responsesAssociation parametersCluster associationsBias correctionOrdinal dataEstimatorEstimating EquationsNominal levelMarginal meansResidualsEstimationPairwise odds ratiosAssociation modelGEE modelAccounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity
Tong J, Li F, Harhay M, Tong G. Accounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity. BMC Medical Research Methodology 2023, 23: 85. PMID: 37024809, PMCID: PMC10077680, DOI: 10.1186/s12874-023-01887-8.Peer-Reviewed Original ResearchConceptsSample size methodsSample size proceduresSize proceduresTreatment effect heterogeneityHeterogeneous treatment effectsSize methodMissingness ratesSample size formulaSample size estimationMissingness indicatorsEffect heterogeneityReal-world examplesSimulation studyIntracluster correlation coefficientInflation methodSize formulaAverage treatment effectResultsSimulation resultsSample size estimatesSize estimationMissingnessSample sizeClustersEstimationFormula
2022
Assessing Exposure-Time Treatment Effect Heterogeneity in Stepped-Wedge Cluster Randomized Trials
Maleyeff L, Li F, Haneuse S, Wang R. Assessing Exposure-Time Treatment Effect Heterogeneity in Stepped-Wedge Cluster Randomized Trials. Biometrics 2022, 79: 2551-2564. PMID: 36416302, PMCID: PMC10203056, DOI: 10.1111/biom.13803.Peer-Reviewed Original ResearchConceptsTreatment effect heterogeneityEffect heterogeneityParameter increasesTreatment effect parametersParametric functional formModel choicePermutation testModel formulationSimulation studyPrecise averageNew model formulationFunctional formEffect parametersRandom effectsTreatment effect estimatesCategorical termsVariance componentsSimulating time-to-event data subject to competing risks and clustering: A review and synthesis
Meng C, Esserman D, Li F, Zhao Y, Blaha O, Lu W, Wang Y, Peduzzi P, Greene E. Simulating time-to-event data subject to competing risks and clustering: A review and synthesis. Statistical Methods In Medical Research 2022, 32: 305-333. PMID: 36412111, DOI: 10.1177/09622802221136067.Peer-Reviewed Original ResearchDesign and analysis of cluster randomized trials with time‐to‐event outcomes under the additive hazards mixed model
Blaha O, Esserman D, Li F. Design and analysis of cluster randomized trials with time‐to‐event outcomes under the additive hazards mixed model. Statistics In Medicine 2022, 41: 4860-4885. PMID: 35908796, PMCID: PMC9588628, DOI: 10.1002/sim.9541.Peer-Reviewed Original ResearchConceptsSample size formulaCluster sizeNew sample size formulaSample size proceduresSize formulaEffect parametersSandwich variance estimatorStatistical inferenceCluster size variationEvent outcomesRandomization-based testsImproved inferenceSize proceduresTreatment effect parametersVariance estimatorSmall sample biasesAnalysis of clustersSimulation studyUnequal cluster sizesFrailty termVariance inflation factorFailure timeSample size requirementsMixed modelsAppropriate definitionTwo weights make a wrong: Cluster randomized trials with variable cluster sizes and heterogeneous treatment effects
Wang X, Turner EL, Li F, Wang R, Moyer J, Cook AJ, Murray DM, Heagerty PJ. Two weights make a wrong: Cluster randomized trials with variable cluster sizes and heterogeneous treatment effects. Contemporary Clinical Trials 2022, 114: 106702. PMID: 35123029, PMCID: PMC8936048, DOI: 10.1016/j.cct.2022.106702.Peer-Reviewed Original ResearchConceptsInverse cluster sizeVariable cluster sizesCluster sizeCorrelation matrixTreatment effect estimatesCluster correlationEquation frameworkEstimation characteristicsTheoretical derivationSimulation studyAverage treatment effectHeterogeneous treatment effectsDistinct weightsEstimandsCluster levelHierarchical nestingMatrixHypothetical populationEstimatesValid resultsDerivationClustersConceptual populationEstimationEffect estimates
2021
Sample size estimation for modified Poisson analysis of cluster randomized trials with a binary outcome
Li F, Tong G. Sample size estimation for modified Poisson analysis of cluster randomized trials with a binary outcome. Statistical Methods In Medical Research 2021, 30: 1288-1305. PMID: 33826454, PMCID: PMC9132618, DOI: 10.1177/0962280221990415.Peer-Reviewed Original ResearchConceptsSample size formulaExchangeable working correlationExtensive Monte Carlo simulation studySize formulaMonte Carlo simulation studyFinite sample correctionMarginal relative riskCorresponding sample size formulaeSandwich variance estimatorVariable cluster sizesNumber of clustersAsymptotic efficiencySandwich varianceCluster size variabilityRobust sandwich varianceSample size estimationVariance estimatorAnalytical derivationSimulation studyCluster sizePoisson modelCoefficient estimatesFormulaCorrelation coefficient estimatesBinary outcomes
2020
A note on the estimation and inference with quadratic inference functions for correlated outcomes
Yu H, Tong G, Li F. A note on the estimation and inference with quadratic inference functions for correlated outcomes. Communications In Statistics - Simulation And Computation 2020, 51: 6525-6536. PMID: 36568127, PMCID: PMC9782733, DOI: 10.1080/03610918.2020.1805463.Peer-Reviewed Original ResearchQuadratic inference functionsInference functionScore equationsQuadratic inference function approachRegression parametersFinite samplesCombination of estimatorsGeneral settingEquationsCorrelated outcomesSimulation studyEstimatorFunction approachAnalytical insightsPopular methodInferenceSolutionMultiple setsMisspecificationSetFunctionEstimationAlternative solutionNoteParametersAn evaluation of quadratic inference functions for estimating intervention effects in cluster randomized trials
Yu H, Li F, Turner EL. An evaluation of quadratic inference functions for estimating intervention effects in cluster randomized trials. Contemporary Clinical Trials Communications 2020, 19: 100605. PMID: 32728648, PMCID: PMC7381491, DOI: 10.1016/j.conctc.2020.100605.Peer-Reviewed Original Research
2019
Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure
Li F. Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure. Statistics In Medicine 2019, 39: 438-455. PMID: 31797438, PMCID: PMC7027591, DOI: 10.1002/sim.8415.Peer-Reviewed Original ResearchConceptsQuasi-least squaresCorrelation structureAdditional correlation parameterCluster correlation structureCorrelation parametersSample size proceduresPeriod correlationMultiple outcome measurementsSandwich varianceCorrelation decayPower proceduresSize proceduresEmpirical powerSimulation studySame clusterTrial exampleSquaresAnalysis considerationsWedge designParametersSample sizeContinuous outcomesClusters