2022
Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells
Franchina DG, Kurniawan H, Grusdat M, Binsfeld C, Guerra L, Bonetti L, Soriano-Baguet L, Ewen A, Kobayashi T, Farinelle S, Minafra AR, Vandamme N, Carpentier A, Borgmann FK, Jäger C, Chen Y, Kleinewietfeld M, Vasiliou V, Mittelbronn M, Hiller K, Lang PA, Brenner D. Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nature Communications 2022, 13: 1789. PMID: 35379825, PMCID: PMC8980022, DOI: 10.1038/s41467-022-29426-x.Peer-Reviewed Original ResearchConceptsElectron transport chainMarginal zone B cellsMitochondrial electron transport chainGlutamate-cysteine ligaseCatalytic subunitRedox controlCell-specific ablationRedox balanceTransport chainMetabolic dependenciesCysteine ligaseProtein synthesisMetabolite succinateMTOR activationGlutathione synthesisATP levelsMetabolic propertiesB cellsMetabolic principlesMetabolic featuresDistinct metabolic propertiesMZBCellsActivationLigase
2020
Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function
Kurniawan H, Franchina DG, Guerra L, Bonetti L, -Baguet LS, Grusdat M, Schlicker L, Hunewald O, Dostert C, Merz MP, Binsfeld C, Duncan GS, Farinelle S, Nonnenmacher Y, Haight J, Das Gupta D, Ewen A, Taskesen R, Halder R, Chen Y, Jäger C, Ollert M, Wilmes P, Vasiliou V, Harris IS, Knobbe-Thomsen CB, Turner JD, Mak TW, Lohoff M, Meiser J, Hiller K, Brenner D. Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metabolism 2020, 31: 920-936.e7. PMID: 32213345, PMCID: PMC7265172, DOI: 10.1016/j.cmet.2020.03.004.Peer-Reviewed Original ResearchConceptsSuppressive capacityRegulatory T cell functionTreg suppressive capacityTreg-specific ablationAnti-tumor responseT cell functionSerine metabolismTreg functionalityFoxp3 expressionPrevent autoimmunitySevere autoimmunityTreg differentiationImmune homeostasisEffector TGlutamate-cysteine ligaseCell responsesTregsMTOR activationMutant miceCell functionAutoimmunitySerine availabilityGlutathione synthesisCysteine ligaseMice
2018
Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation
Lian G, Gnanaprakasam JR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TW, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife 2018, 7: e36158. PMID: 30198844, PMCID: PMC6152796, DOI: 10.7554/elife.36158.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell ProliferationDimethyl FumarateGlutamate-Cysteine LigaseGlutamineGlutathioneGlutathione DisulfideHomeostasisLymphocyte ActivationMice, Inbred C57BLOxidation-ReductionOxidative StressReactive Oxygen SpeciesReceptors, Antigen, T-CellT-LymphocytesT-Lymphocytes, RegulatoryTh17 CellsConceptsCell fateDe novo synthesisNovo synthesisCell differentiationT cell differentiationMurine T cell differentiationT cell fateGlutamate-cysteine ligaseLineage choiceRedox demandsGlutathione de novo synthesisRecycling pathwayInhibition of GSHRedox homeostasisGSH biosynthesisGlutamine catabolismRedox balanceModifier subunitEssential precursorIntracellular GSHEssential roleGlutathione disulfideDifferentiationGSH contentGSH
2017
Glutathione Primes T Cell Metabolism for Inflammation
Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, Binsfeld C, Hao Z, Brüstle A, Itsumi M, Jäger C, Chen Y, Pinkenburg O, Camara B, Ollert M, Bindslev-Jensen C, Vasiliou V, Gorrini C, Lang PA, Lohoff M, Harris IS, Hiller K, Brenner D. Glutathione Primes T Cell Metabolism for Inflammation. Immunity 2017, 46: 675-689. PMID: 28423341, DOI: 10.1016/j.immuni.2017.03.019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEncephalomyelitis, Autoimmune, ExperimentalEnergy MetabolismGlutamate-Cysteine LigaseGlutamineGlutathioneGlycolysisImmunoblottingInflammationMice, Inbred C57BLMice, KnockoutNFATC Transcription FactorsProto-Oncogene Proteins c-mycReactive Oxygen SpeciesSignal TransductionT-LymphocytesTOR Serine-Threonine KinasesConceptsReactive oxygen speciesMYC transcription factorsConditional gene targetingT cell-specific ablationGlutamate-cysteine ligaseT cell metabolismRapamycin 1Catalytic subunitMetabolic integrationTranscription factorsGene targetingMetabolic reprogrammingBiosynthetic requirementsUnexpected roleExpression of NFATAntiviral defenseCysteine ligaseCell metabolismGSH pathwayMammalian targetGSH productionMurine TGSH deficiencyOxygen speciesCell effector functions
2013
Glutathione defense mechanism in liver injury: Insights from animal models
Chen Y, Dong H, Thompson DC, Shertzer HG, Nebert DW, Vasiliou V. Glutathione defense mechanism in liver injury: Insights from animal models. Food And Chemical Toxicology 2013, 60: 38-44. PMID: 23856494, PMCID: PMC3801188, DOI: 10.1016/j.fct.2013.07.008.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsLiver injuryGlutamate-cysteine ligaseMouse modelLiver disease processTransgenic mouse modelCellular GSH concentrationGSH homeostasisLiver diseaseClinical stageHepatic insultLiver pathologyDisease processRate-limiting enzymeAnimal modelsHepatic GSHHepatic responseModifier subunitGenetic deficiencyInjuryPathophysiological functionsGSH deficitThiol antioxidantGSH concentrationMiceRole of GSH
2011
Glutathione-Deficient Mice Are Susceptible to TCDD-Induced Hepatocellular Toxicity but Resistant to Steatosis
Chen Y, Krishan M, Nebert DW, Shertzer HG. Glutathione-Deficient Mice Are Susceptible to TCDD-Induced Hepatocellular Toxicity but Resistant to Steatosis. Chemical Research In Toxicology 2011, 25: 94-100. PMID: 22082335, DOI: 10.1021/tx200242a.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAspartate AminotransferasesEnvironmental PollutantsFatty LiverFemaleGamma-GlutamyltransferaseGene Expression RegulationGlutamate-Cysteine LigaseGlutathioneLipid MetabolismLiverMiceMice, Inbred C57BLMice, KnockoutNon-alcoholic Fatty Liver DiseaseOligonucleotide Array Sequence AnalysisPolychlorinated DibenzodioxinsReverse Transcriptase Polymerase Chain ReactionConceptsTetrachlorodibenzo-p-dioxinGlutamic oxaloacetic transaminaseGlutamate-cysteine ligaseHepatocellular toxicityPlasma glutamic oxaloacetic transaminaseWild-type female miceImpaired lipid metabolismTissue GSH levelsTCDD-induced hepatotoxicityGlutathione-deficient miceΓ-glutamyl transferaseHepatocellular injuryWT miceHepatocellular damageLipid metabolism genesFemale miceWT littermatesTransgenic miceCDNA microarray expression analysisDe novo GSH biosynthesisOxaloacetic transaminaseLipid metabolismConsecutive daysSteatosisMice
2009
Early onset senescence occurs when fibroblasts lack the glutamate–cysteine ligase modifier subunit
Chen Y, Johansson E, Fan Y, Shertzer HG, Vasiliou V, Nebert DW, Dalton TP. Early onset senescence occurs when fibroblasts lack the glutamate–cysteine ligase modifier subunit. Free Radical Biology And Medicine 2009, 47: 410-418. PMID: 19427898, PMCID: PMC2773044, DOI: 10.1016/j.freeradbiomed.2009.05.003.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAnimalsBeta-GalactosidaseCell Culture TechniquesCell CycleCell Growth ProcessesCellular SenescenceCyclin-Dependent Kinase Inhibitor p21DNA DamageFemaleFetusFibroblastsFree Radical ScavengersGlutamate-Cysteine LigaseGlutathioneMiceMice, Inbred C57BLMice, KnockoutPregnancyProtein SubunitsReactive Oxygen SpeciesTumor Suppressor Protein p53ConceptsGlutamate-cysteine ligasePremature senescenceCellular redox environmentCellular antioxidant glutathionePrimary murine fibroblastsSenescence-associated beta-galactosidase activityCell cycle arrestInduction of p53Beta-galactosidase activityPrevents premature senescenceCatalytic subunitCellular senescenceGrowth arrestGlutamate cysteine ligase modifierModifier subunitP21 proteinPhysiological roleSenescenceDNA damageRedox environmentCycle arrestMurine fibroblastsGSH synthesisN-acetylcysteine increasesPrimary cellsCurcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit
Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, Q. K. Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. Journal Of Neurochemistry 2009, 108: 1410-1422. PMID: 19183254, DOI: 10.1111/j.1471-4159.2009.05908.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAntioxidantsAstrocytesCell SurvivalCells, CulturedCerebral CortexCurcuminDose-Response Relationship, DrugEmbryo, MammalianEnzyme InhibitorsGene ExpressionGlutamate-Cysteine LigaseGlutathioneHydroquinonesMiceMice, Inbred C57BLMice, KnockoutNeuronsProtein SubunitsQuercetinUp-RegulationConceptsGlutamate-cysteine ligaseGCL activityRate-limiting synthesizing enzymeRedox regulatorCatalytic subunitGSH levelsGene expressionCysteine ligaseGlutamate cysteine ligase modifierModifier subunitCell deathCell typesGSH synthesisEnzymeNeurodegenerative diseasesCultured neuronsGCLMSubunitsMRNA levelsSynthesizing enzymesGSHLower GSHAbility of curcuminExpressionLigase
2007
Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase
Yang Y, Chen Y, Johansson E, Schneider SN, Shertzer HG, Nebert DW, Dalton TP. Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase. Biochemical Pharmacology 2007, 74: 372-381. PMID: 17517378, DOI: 10.1016/j.bcp.2007.02.003.Peer-Reviewed Original ResearchConceptsGlutamate-cysteine ligaseHeterodimer formationEnzyme structure-function relationshipsTwo-hybrid systemGlutathione biosynthesis pathwayPrimary amino acid sequenceC-terminal regionAmino acid sequenceN-terminal regionStructure-function relationshipsBiosynthesis pathwayRegulatory subunitCatalytic subunitDeletion analysisRate-limiting enzymeTertiary structureModifier subunitAmino acidsPoint mutationsSubunitsGCLCGSH inhibitionLigaseEnzyme activityGCLM
2005
Butylhydroquinone Protects Cells Genetically Deficient in Glutathione Biosynthesis from Arsenite-Induced Apoptosis Without Significantly Changing Their Prooxidant Status
Kann S, Estes C, Reichard JF, Huang MY, Sartor MA, Schwemberger S, Chen Y, Dalton TP, Shertzer HG, Xia Y, Puga A. Butylhydroquinone Protects Cells Genetically Deficient in Glutathione Biosynthesis from Arsenite-Induced Apoptosis Without Significantly Changing Their Prooxidant Status. Toxicological Sciences 2005, 87: 365-384. PMID: 16014739, DOI: 10.1093/toxsci/kfi253.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisArsenitesBlotting, WesternCell SurvivalCells, CulturedDNA, ComplementaryElectrophoretic Mobility Shift AssayFibroblastsGene Expression RegulationGlutamate-Cysteine LigaseGlutathioneHydroquinonesMiceMice, KnockoutNF-kappa BOligonucleotide Array Sequence AnalysisOxidantsOxidative StressRNATetrazolium SaltsThiazolesConceptsMouse embryo fibroblastsGlutathione biosynthesisGlobal gene expression profilesAntioxidant responseCell cycle regulationArsenite-induced apoptosisEffective antioxidant responseArsenic-induced apoptosisGene expression profilesExpression of genesGlutamate-cysteine ligaseOxidative stressProtein biosynthesisRole of glutathioneCycle regulationRate-limiting enzymeGene deregulationExpression profilesArsenic-induced oxidative stressEmbryo fibroblastsInduces oxidative stressModifier subunitApoptotic deathDNA damageToxicity of arsenic
2002
Initial Characterization of the Glutamate-Cysteine Ligase Modifier Subunit Gclm(−/−) Knockout Mouse NOVEL MODEL SYSTEM FOR A SEVERELY COMPROMISED OXIDATIVE STRESS RESPONSE*
Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP. Initial Characterization of the Glutamate-Cysteine Ligase Modifier Subunit Gclm(−/−) Knockout Mouse NOVEL MODEL SYSTEM FOR A SEVERELY COMPROMISED OXIDATIVE STRESS RESPONSE*. Journal Of Biological Chemistry 2002, 277: 49446-49452. PMID: 12384496, DOI: 10.1074/jbc.m209372200.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAllelesAnimalsBlotting, NorthernBlotting, SouthernBody WeightCell DeathChromatography, GelCysteineDose-Response Relationship, DrugFibroblastsGenotypeGlutamate-Cysteine LigaseGlutamic AcidGlutathioneHomozygoteHydrogen PeroxideImmunoblottingKidneyKineticsLiverMiceMice, KnockoutModels, GeneticMutagenesis, Site-DirectedOxidative StressOxygenPhenotypePolymerase Chain ReactionProtein Structure, TertiaryTime FactorsTissue DistributionConceptsGlutamate-cysteine ligaseModifier subunitGSH biosynthesis pathwayGlutamate-cysteine ligase modifier subunitOxidative stress responseGCL holoenzymeHigher eukaryotesBiosynthesis pathwayCellular functionsCatalytic subunitNovel model systemRate-limiting enzymeNumerous pathophysiological conditionsNull allelesStress responseOvert phenotypeGCL activityOxidant insultSubunitsFetal fibroblastsChronic GSH depletionInitial characterizationHoloenzymeGSH inhibitionGSH depletion