2025
Robust Transfer Learning for High‐Dimensional GLM Using γ$$ \gamma $$‐Divergence With Applications to Cancer Genomics
Xu F, Ma S, Zhang Q, Xu Y. Robust Transfer Learning for High‐Dimensional GLM Using γ$$ \gamma $$‐Divergence With Applications to Cancer Genomics. Statistics In Medicine 2025, 44: e70170. PMID: 40662636, PMCID: PMC12313224, DOI: 10.1002/sim.70170.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsBreast NeoplasmsComputer SimulationGenomicsHumansLinear ModelsMachine LearningNeoplasmsConceptsTransfer learningReal world biomedical dataRisk of negative transferProximal gradient descentTransfer learning methodTransfer learning approachHigh-dimensional dataHigh-dimensional settingsGradient descentCompetitive performanceLearning methodsEstimation error boundsBiomedical dataEfficient algorithmLearning approachDetection schemeNegative transferAnalysis of complex diseasesDebiasing stepMethod's effectivenessCancer genomic dataData contaminationError boundsHigh-dimensional profiling dataOutliersBayesian Modeling of Cancer Outcomes Using Genetic Variables Assisted by Pathological Imaging Data
Im Y, Li R, Ma S. Bayesian Modeling of Cancer Outcomes Using Genetic Variables Assisted by Pathological Imaging Data. Statistics In Medicine 2025, 44: e10350. PMID: 39840672, PMCID: PMC11774474, DOI: 10.1002/sim.10350.Peer-Reviewed Original Research
2024
Information‐incorporated sparse hierarchical cancer heterogeneity analysis
Han W, Zhang S, Ma S, Ren M. Information‐incorporated sparse hierarchical cancer heterogeneity analysis. Statistics In Medicine 2024, 43: 2280-2297. PMID: 38553996, PMCID: PMC12201913, DOI: 10.1002/sim.10071.Peer-Reviewed Original ResearchMeSH KeywordsComputer SimulationGenetic HeterogeneityHumansModels, StatisticalNeoplasmsPrecision Medicine
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply