2025
Robust Transfer Learning for High‐Dimensional GLM Using γ$$ \gamma $$‐Divergence With Applications to Cancer Genomics
Xu F, Ma S, Zhang Q, Xu Y. Robust Transfer Learning for High‐Dimensional GLM Using γ$$ \gamma $$‐Divergence With Applications to Cancer Genomics. Statistics In Medicine 2025, 44: e70170. PMID: 40662636, PMCID: PMC12313224, DOI: 10.1002/sim.70170.Peer-Reviewed Original ResearchConceptsTransfer learningReal world biomedical dataRisk of negative transferProximal gradient descentTransfer learning methodTransfer learning approachHigh-dimensional dataHigh-dimensional settingsGradient descentCompetitive performanceLearning methodsEstimation error boundsBiomedical dataEfficient algorithmLearning approachDetection schemeNegative transferAnalysis of complex diseasesDebiasing stepMethod's effectivenessCancer genomic dataData contaminationError boundsHigh-dimensional profiling dataOutliersIntegrative rank-based regression for multi-source high-dimensional data with multi-type responses
Xu F, Ma S, Zhang Q. Integrative rank-based regression for multi-source high-dimensional data with multi-type responses. Journal Of Applied Statistics 2025, 52: 2011-2030. PMID: 40904949, PMCID: PMC12404076, DOI: 10.1080/02664763.2025.2452964.Peer-Reviewed Original Research
2024
Integrative factor-adjusted sparse generalized linear models
Xu F, Ma S, Zhang Q. Integrative factor-adjusted sparse generalized linear models. Journal Of Statistical Computation And Simulation 2024, 95: 764-780. DOI: 10.1080/00949655.2024.2439450.Peer-Reviewed Original ResearchVariable selection consistencyHigh-dimensional dataIncreased accessibility of dataSelection consistencyConsistency propertiesCorrelated covariatesGeneralized linear modelVariable selectionAnalysis of genetic dataAccessibility of dataIdiosyncratic componentsCompetitive performanceCovariatesGenetic dataLinear modelSample sizeImprove model performanceEstimationIntegrated analysisModel estimatesLatent factorsModel performancePractical useConsistency
2021
Promote sign consistency in the joint estimation of precision matrices
Zhang Q, Ma S, Huang Y. Promote sign consistency in the joint estimation of precision matrices. Computational Statistics & Data Analysis 2021, 159: 107210. DOI: 10.1016/j.csda.2021.107210.Peer-Reviewed Original ResearchMultiple precision matricesPrecision matrixRegularization methodJoint estimationGroup parametersSign consistencyConsistency propertiesGaussian graphical modelsNovel regularization methodHigh-dimensional dataRandom variablesSparsity structureData examplesMore interpretable resultsNatural interpretationConditional independenceInterpretable resultsGraphical modelsPractical examplesEstimationConflicting signsPopular toolMatrixParametersFull flexibility
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply