2025
Hierarchical Multi‐Label Classification With Gene‐Environment Interactions in Disease Modeling
Li J, Zhang Q, Ma S, Fang K, Xu Y. Hierarchical Multi‐Label Classification With Gene‐Environment Interactions in Disease Modeling. Statistics In Medicine 2025, 44: e10330. PMID: 39865593, PMCID: PMC12201914, DOI: 10.1002/sim.10330.Peer-Reviewed Original ResearchConceptsHierarchical multi-label classificationMulti-label classificationGene-environment interaction analysisGene-environmentEfficient expectation-maximizationGene-environment interactionsSemi-supervised scenariosCancer Genome AtlasUnlabeled dataInteraction analysisExpectation-maximizationGenome AtlasSuperior performanceHierarchical responseDisease outcomeClassificationPenalized estimatorsPractice settingsDisease modelsBiomedical studiesAnalysis literatureE effects
2024
The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies
Liu Y, Ren J, Ma S, Wu C. The spike‐and‐slab quantile LASSO for robust variable selection in cancer genomics studies. Statistics In Medicine 2024, 43: 4928-4983. PMID: 39260448, PMCID: PMC11585335, DOI: 10.1002/sim.10196.Peer-Reviewed Original ResearchAsymmetric Laplace distributionSpike-and-slab LASSORobust variable selection methodHeavy-tailed errorsRobust variable selectionHeavy-tailed distributionsAnalysis of high-dimensional genomic dataHigh-dimensional genomic dataExpectation-maximizationComprehensive simulation studyVariable selection methodsLaplace distributionCoordinate descent frameworkPosterior modeCancer genomics studiesRobust likelihoodVariable selectionSparsity patternSimulation studyComputational advantagesQuantile regressionNonrobust oneSelf-adaptationLoss functionGenomic studies
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply