WEBVTT

00:00:00.180 --> 00:00:03.110 - Seminar, so hello everyone. 00:00:03.110 --> 00:00:05.350 My name is Qingyuan Zhao, 00:00:05.350 --> 00:00:10.170 I'm currently a University Lecturer in Statistics 00:00:10.170 --> 00:00:11.853 in University of Cambridge. 00:00:13.020 --> 00:00:15.440 I visited Yale Biostats, 00:00:15.440 --> 00:00:19.153 briefly last year in February. $00:00:21.340 \rightarrow 00:00:26.340$ And so it's nice to see every guest very shortly this time. 00:00:28.380 --> 00:00:30.280 And today I'll talk 00:00:30.280 --> 00:00:33.939 about sensitivity analysis for observational studies, 00:00:33.939 --> 00:00:37.040 looking back and moving forward. 00:00:37.040 --> 00:00:39.070 So this is based on ongoing work $00:00:39.070 \rightarrow 00:00:44.070$ with several people Bo Zhang, Ting Ye and Dylan Small 00:00:44.790 --> 00:00:46.480 at University of Pennsylvania, 00:00:46.480 --> 00:00:49.483 and also Joe Hogan at Brown University. 00:00:52.280 --> 00:00:57.280 So sensitivity analysis is really a very broad term 00:00:58.880 --> 00:01:01.890 and you can find in almost any area $00:01:01.890 \rightarrow 00:01:04.353$ that uses mathematical models. 00:01:05.680 --> 00:01:07.530 So, broadly speaking, $00:01:07.530 \rightarrow 00:01:12.380$ what it tries to do is it studies how the uncertainty $00:01:12.380 \rightarrow 00:01:17.010$ in the input of a mathematical model or system, $00:01:17.010 \rightarrow 00:01:19.890$ numerical or otherwise can be apportioned $00:01:19.890 \rightarrow 00:01:23.860$ to different sources of uncertainty in it's input. $00:01:23.860 \rightarrow 00:01:26.810$ So it's an extremely broad concept. $00:01:26.810 \rightarrow 00:01:30.380$ And you can even fit statistics as part $00:01:30.380 \rightarrow 00:01:33.703$ of a sensitivity analysis in some sense. $00:01:34.840 \rightarrow 00:01:39.533$ But here, there can be a lot of kinds of model inputs. 00:01:40.691 --> 00:01:43.400 So, in particular,

 $00{:}01{:}43{.}400 \dashrightarrow 00{:}01{:}47{.}010$ it can be any factor that can be changed in a model

 $00:01:47.010 \longrightarrow 00:01:49.183$ prior to its execution.

 $00:01:50.310 \rightarrow 00:01:53.320$ So one example is structural

 $00:01:53.320 \rightarrow 00:01:57.350$ or epistemic sources of uncertainty.

 $00:01:57.350 \rightarrow 00:02:00.680$ And this is sort of the things we'll talk about.

 $00:02:00.680 \rightarrow 00:02:03.490$ So basically, what our talk about today

 $00:02:03.490 \rightarrow 00:02:06.870$ is those things that we don't really know.

 $00{:}02{:}06.870 \dashrightarrow 00{:}02{:}08.810$ I mean, we made a lot of assumptions

 $00:02:08.810 \rightarrow 00:02:12.970$ about when proposing such a model.

 $00:02:12.970 \rightarrow 00:02:16.337$ So in the context of observational studies,

 $00{:}02{:}16.337 \dashrightarrow 00{:}02{:}20.260$ a very common and typical question

00:02:20.260 --> 00:02:23.710 that requires sensitivity analysis is the following.

 $00{:}02{:}23.710$ --> $00{:}02{:}28.680$ How do the qualitative and or the quantitative conclusions

 $00:02:28.680 \rightarrow 00:02:30.652$ of the observational study change

 $00{:}02{:}30{.}652$ --> $00{:}02{:}34{.}930$ if the no unmeasured confounding assumption is violated?

 $00:02:34.930 \rightarrow 00:02:38.710$ So this is really common because essentially,

 $00:02:38.710 \rightarrow 00:02:41.910$ in the vast majority of observational studies,

 $00:02:41.910 \longrightarrow 00:02:44.610$ it's essential to assume this

 $00:02:44.610 \rightarrow 00:02:46.850$ no unmeasured confounding assumption,

 $00:02:46.850 \rightarrow 00:02:50.270$ and this is an assumption that we cannot test

 $00:02:50.270 \longrightarrow 00:02:51.880$ with empirical data,

 $00:02:51.880 \rightarrow 00:02:54.213$ at least with just observational data.

00:02:55.360 --> 00:02:58.500 So any, if you do any observational studies,

 $00{:}02{:}58{.}500 \dashrightarrow 00{:}03{:}01{.}750$ so you're almost bound to be asked this question

 $00:03:01.750 \longrightarrow 00:03:04.023$ that, what if this assumption doesn't hold?

 $00:03:06.051 \dashrightarrow 00:03:08.140$ And I'd like to point out that this question

 $00{:}03{:}08{.}140 \dashrightarrow 00{:}03{:}11.650$ is fundamentally connected to missing not at random

 $00:03:11.650 \dashrightarrow 00:03:13.890$ in the missing data literature.

00:03:13.890 --> 00:03:16.010 So what I will do today is I'll focus 00:03:16.010 --> 00:03:19.860 on sensitivity analysis for observational studies, $00:03:19.860 \longrightarrow 00:03:21.860$ but a lot of the ideas are drawn $00:03:21.860 \rightarrow 00:03:24.380$ from the missing data literature. $00:03:24.380 \longrightarrow 00:03:27.500$ And most of the ideas that I'll talk about $00:03:27.500 \rightarrow 00:03:30.140$ today can be also applied there $00:03:30.140 \rightarrow 00:03:32.083$ and to related problems as well. $00:03:34.970 \rightarrow 00:03:39.970$ So, currently, a state of the art of sensitivity analvsis $00:03:40.220 \rightarrow 00:03:43.400$ for observational studies is the following. $00:03:43.400 \rightarrow 00:03:47.440$ There are many, many masters gazillions of methods 00:03:47.440 --> 00:03:50.490 of exaggeration, but certainly many methods $00:03:50.490 \rightarrow 00:03:54.140$ that are specifically designed for different $00:03:54.140 \longrightarrow 00:03:56.193$ kinds of sensitivity analysis. $00:03:57.570 \rightarrow 00:04:02.570$ It often also depends on how you analyze your data $00:04:02.580 \rightarrow 00:04:04.823$ under unmeasured confounding assumption. $00:04:06.080 \rightarrow 00:04:08.810$ There are various forms of statistical guarantees $00{:}04{:}08{.}810 \dashrightarrow 00{:}04{:}10{.}073$ that have been proposed. $00:04:11.120 \longrightarrow 00:04:15.320$ And oftentimes, these methods are not always $00:04:15.320 \rightarrow 00:04:17.350$ straightforward to interpret, $00:04:17.350 \rightarrow 00:04:20.470$ at least for inexperienced researchers, $00:04:20.470 \rightarrow 00:04:23.623$ it can be quite complicated and confusing. $00:04:25.950 \rightarrow 00:04:29.903$ The goal of this talk is to give you a high level overview. $00:04:30.860 \rightarrow 00:04:33.860$ So this is not a talk where I'm gonna unveil $00:04:33.860 \longrightarrow 00:04:35.770$ a lot of new methods. $00{:}04{:}35{.}770 \dashrightarrow 00{:}04{:}39{.}660$ This is more of an overview kind of talk $00:04:39.660 \rightarrow 00:04:42.230$ that just to try to go through $00:04:42.230 \longrightarrow 00:04:46.160$ some of the main ideas in this area.

00:04:46.160 --> 00:04:47.150 So in particular,

 $00{:}04{:}47.150$ --> $00{:}04{:}51.880$ what I wanted to address is the following two questions.

 $00:04:51.880 \rightarrow 00:04:54.090$ What is the common structure behind

 $00:04:54.090 \rightarrow 00:04:57.300$ all these sensitivity analysis methods?

 $00{:}04{:}57{.}300$ --> $00{:}05{:}01{.}760$ And what are some good principles and ideas we should follow

 $00{:}05{:}01{.}760 \dashrightarrow 00{:}05{:}05{.}790$ and perhaps extend when we have similar problems?

 $00{:}05{:}05{.}790$ --> $00{:}05{:}10{.}230$ The perspective of this talk will be global and frequentist.

 $00{:}05{:}10.230 \dashrightarrow 00{:}05{:}11.990$ By that, I mean,

 $00:05:11.990 \dashrightarrow 00:05:13.750$ there's an area in sensitivity analysis

 $00:05:13.750 \rightarrow 00:05:15.520$ called local sensitivity analysis,

 $00:05:15.520 \rightarrow 00:05:18.674$ where you're only allowed to move your parameter

 $00:05:18.674 \rightarrow 00:05:23.513$ near its maximum likelihood estimate, usually.

 $00:05:24.500 \rightarrow 00:05:29.190$ But global sensitivity analysis refer to the method

 $00:05:29.190 \longrightarrow 00:05:31.470$ that you can model your sensitivity parameter

 $00:05:31.470 \longrightarrow 00:05:33.603$ freely in a space.

 $00:05:34.700 \longrightarrow 00:05:36.913$ So that's what we'll focus on today.

00:05:37.900 --> 00:05:40.360 And also, I'll take a frequentist perspective.

00:05:40.360 --> 00:05:43.093 So I won't talk about Bayesian sensitivity analysis,

 $00:05:43.938 \longrightarrow 00:05:45.820$ which is also a big area.

 $00:05:45.820 \rightarrow 00:05:48.880$ And I'll use this portal typical setup

00:05:49.950 --> 00:05:51.950 in observational studies,

 $00{:}05{:}51{.}950 \dashrightarrow 00{:}05{:}55{.}870$ where you have iid copies of these observed data O,

 $00:05:55.870 \rightarrow 00:06:00.250$ which has three parts, x is the covariance,

 $00:06:00.250 \rightarrow 00:06:04.300$ A the binary treatment, Y is the outcome

 $00{:}06{:}04{.}300 \dashrightarrow 00{:}06{:}06{.}350$ and these observed observed data

 $00:06:06.350 \rightarrow 00:06:10.480$ that come from underlying full data, F,

00:06:10.480 --> 00:06:12.770 which includes X and A

 $00:06:12.770 \rightarrow 00:06:15.547$ and the potential outcomes, Y(0) and Y(1).

00:06:16.910 --> 00:06:17.973 Okay, so this is,

00:06:19.474 --> 00:06:21.490 if you haven't, if most of you probably have seen this

00:06:21.490 --> 00:06:23.700 many, many times already,

 $00:06:23.700 \longrightarrow 00:06:25.481$ but if you haven't seen that this

 $00:06:25.481 \rightarrow 00:06:28.521$ is the most typical setup in observational studies.

00:06:28.521 --> 00:06:30.383 And it kind of gets a little bit boring

 $00:06:30.383 \rightarrow 00:06:31.610$ when you see it so many times.

 $00:06:31.610 \longrightarrow 00:06:33.150$ But what we're trying to do

 $00:06:34.204 \rightarrow 00:06:37.080$ is to use this as the simplest example,

 $00:06:37.080 \longrightarrow 00:06:41.010$ to demonstrate the structure and ideas.

00:06:41.010 --> 00:06:46.010 And hopefully, if you understand these good ideas,

 $00:06:46.060 \rightarrow 00:06:49.780$ you can apply them to your problems

 $00{:}06{:}49{.}780$ --> $00{:}06{:}52{.}793$ that are may be slightly more complicated than this.

 $00{:}06{:}54{.}930 \dashrightarrow 00{:}06{:}56{.}758$ So here's the outline

00:06:56.758 --> 00:06:58.500 and I'll give a motivating example

 $00:06:58.500 \rightarrow 00:07:01.260$ then I'll talk about three components

 $00:07:01.260 \longrightarrow 00:07:02.850$ in the sensitivity analysis.

 $00:07:02.850 \longrightarrow 00:07:04.330$ There the sensitivity model,

 $00:07:04.330 \rightarrow 00:07:07.633$ the statistical inference and the interpretation.

00:07:09.530 --> 00:07:13.330 So the motivating example will sort of demonstrate

 $00:07:13.330 \rightarrow 00:07:16.240$ where these three components come from.

 $00:07:16.240 \rightarrow 00:07:20.750$ So this example is in the social sciences actually

 $00:07:20.750 \longrightarrow 00:07:22.943$ it's about child soldiering,

 $00:07:23.930 \rightarrow 00:07:28.930$ a paper by Blattman and Annan, 2010.

00:07:29.540 --> 00:07:34.018 On the review of economics and statistics,

00:07:34.018 --> 00:07:39.018 so what they studied is this period of time in Uganda,

00:07:41.320 --> 00:07:43.572 from 1995 to 2004,

 $00:07:43.572 \longrightarrow 00:07:45.656$ where there was a civil war

00:07:45.656 --> 00:07:49.092 and about 60,000 to 80,000 youth

 $00:07:49.092 \rightarrow 00:07:52.223$ were abducted by a rebel force.

 $00:07:53.120 \longrightarrow 00:07:54.410$ So the question is,

 $00:07:54.410 \rightarrow 00:07:57.980$ what is the impact of child soldiering

 $00:07:57.980 \longrightarrow 00:08:00.453$ sort of this abduction by the rebel force,

 $00:08:01.380 \rightarrow 00:08:04.370$ as on various outcomes,

 $00:08:04.370 \rightarrow 00:08:07.820$ such as years of education,

 $00{:}08{:}07{.}820 \dashrightarrow 00{:}08{:}11.663$ and in this paper to actually study the number of outcomes.

 $00{:}08{:}12{.}740$ --> $00{:}08{:}16{.}590$ The authors controlled for a variety of baseline covariates,

 $00:08:16.590 \rightarrow 00:08:19.640$ like the children's age, their household size,

 $00:08:19.640 \dashrightarrow 00:08:22.013$ their parental education, et cetera.

 $00{:}08{:}23{.}210$ --> $00{:}08{:}25{.}710$ They were quite concerned about

 $00:08:25.710 \rightarrow 00:08:28.480$ this possible unmeasured confounder.

 $00:08:28.480 \rightarrow 00:08:32.890$ That is the child's ability to hide from the rebel.

 $00:08:32.890 \rightarrow 00:08:37.890$ So it's possible that maybe if this child is smart,

 $00:08:38.620 \rightarrow 00:08:41.230$ and if he knows that he or she knows

 $00:08:41.230 \longrightarrow 00:08:44.010$ how to hide from the rebel,

00:08:44.010 - 00:08:48.610 then he's less likely to be abducted

 $00{:}08{:}48.610 \dashrightarrow 00{:}08{:}50.543$ to be in this data set.

 $00:08:51.620 \rightarrow 00:08:54.680$ And he'll probably also be more likely

 $00:08:54.680 \rightarrow 00:08:58.210$ to receive longer education just because maybe

 $00:09:00.331 \rightarrow 00:09:04.023$ the skin is a bit more small, let's say.

 $00{:}09{:}05{.}710 \dashrightarrow 00{:}09{:}07{.}190$ So in their analysis,

 $00:09:07.190 \rightarrow 00:09:10.880$ they follow the model proposed by Imbens,

 $00:09:10.880 \longrightarrow 00:09:12.430$ which is the following.

 $00{:}09{:}12{.}430$ --> $00{:}09{:}17{.}430$ So basically, they assume this no unmeasured confounding

 $00{:}09{:}18{.}120$ --> $00{:}09{:}21{.}273$ after you conditional on this unmeasured confounder U.

00:09:22.480 --> 00:09:24.291 Okay, so X are all covariates

 $00:09:24.291 \longrightarrow 00:09:25.233$ that U controlled for,

 $00{:}09{:}26.197$ --> $00{:}09{:}30.410$ and U is they assumed is a binary, unmeasured confounder.

 $00:09:31.840 \longrightarrow 00:09:34.513$ That's just a coin flip.

 $00:09:35.800 \rightarrow 00:09:39.000$ And then they assume the logistic model

 $00:09:39.000 \rightarrow 00:09:44.000$ for the probability of being abducted

 $00{:}09{:}44.120$ --> $00{:}09{:}49.120$ and the normal linear model for the potential outcomes.

 $00{:}09{:}49{.}410 \dashrightarrow 00{:}09{:}54{.}410$ So notice that here the linear these terms

 $00:09:55.220 \dashrightarrow 00:09:57.830$ depends on not only the observed covariance,

 $00{:}09{:}57.830 \dashrightarrow 00{:}10{:}00.920$ but also the unmeasured covariates U.

 $00:10:00.920 \longrightarrow 00:10:02.440$ And of course,

 $00:10:02.440 \longrightarrow 00:10:03.910$ we don't measure this U.

 $00:10:03.910 \longrightarrow 00:10:08.003$ So we cannot directly fit these models.

 $00:10:08.920 \rightarrow 00:10:12.040$ But what they did is they because they made

 $00:10:12.040 \rightarrow 00:10:16.080$ some distribution assumptions on U,

 $00{:}10{:}16.080 \dashrightarrow 00{:}10{:}19.100$ you can treat U as unmeasured variable.

 $00:10:19.100 \longrightarrow 00:10:21.010$ And then, for example,

 $00:10:21.010 \rightarrow 00:10:23.873$ fit maximum likelihood estimate.

 $00{:}10{:}25{.}470$ --> $00{:}10{:}29{.}397$ So they're treated this two parameters lambda and delta,

 $00:10:29.397 \longrightarrow 00:10:30.993$ as sensitivity parameters.

 $00:10:31.980 \rightarrow 00:10:34.970$ So these are the parameters that you vary

 $00:10:34.970 \longrightarrow 00:10:37.260$ in a sensitivity analysis.

 $00:10:37.260 \longrightarrow 00:10:39.220$ So when they're both equal to zero,

 $00{:}10{:}39{.}220 \dashrightarrow 00{:}10{:}42{.}837$ that means that there is no unmeasured confounding.

00:10:42.837 --> 00:10:45.810 So you can actually just ignore this confounder U.

00:10:45.810 --> 00:10:48.380 So it corresponds to your primary analysis,

00:10:48.380 --> 00:10:49.810 but in a sensitivity analysis,

 $00{:}10{:}49{.}810 \dashrightarrow 00{:}10{:}52{.}580$ you change the values of lambda and U

 $00{:}10{:}52{.}580 \dashrightarrow 00{:}10{:}55{.}330$ and you see how that changes your result

 $00:10:55.330 \rightarrow 00:10:57.030$ above this parameter beta,

 $00:10:57.030 \longrightarrow 00:10:59.783$ which is interpreted as a causal effect.

 $00{:}11{:}01{.}540$ --> $00{:}11{:}06{.}000$ Okay, so the results can be summarized in this one slide.

 $00:11:06.000 \rightarrow 00:11:07.940$ I mean they've done a lot more definitely.

 $00:11:07.940 \rightarrow 00:11:11.650$ But for the purpose of this talk, basically,

 $00:11:11.650 \rightarrow 00:11:14.760$ what they found is that the primary analysis

 $00:11:14.760 \rightarrow 00:11:17.443$ found that the average treatment effect is -0.76.

 $00:11:18.600 \rightarrow 00:11:21.270$ So remember the outcome was years of education.

00:11:21.270 --> 00:11:23.460 So being abducted,

00:11:23.460 --> 00:11:28.297 has a significant negative effect on education.

 $00:11:30.150 \rightarrow 00:11:32.160$ And then it did a sensitivity analysis,

 $00:11:32.160 \rightarrow 00:11:35.740$ which can be summarized in this calibration plot.

 $00:11:35.740 \rightarrow 00:11:39.710$ What is shown here is that these two axis

 $00:11:39.710 \rightarrow 00:11:43.010$ are basically the two sensitivity parameters,

 $00:11:43.010 \longrightarrow 00:11:44.890$ lambda and delta.

 $00:11:44.890 \rightarrow 00:11:48.350$ So what the paper did is they transform it

 $00:11:48.350 \rightarrow 00:11:50.423$ to the increase in R-squared.

00:11:51.310 --> 00:11:54.853 But that's that can be mapped to lambda and delta,

 $00:11:55.720 \longrightarrow 00:11:57.280$ and then they compared

 $00:11:59.040 \longrightarrow 00:12:01.780$ this curve, so this dashed curve

 $00{:}12{:}03{.}384 \dashrightarrow 00{:}12{:}06{.}970$ is where the values of lambda and delta such that

 $00:12:06.970 \longrightarrow 00:12:09.773$ the treatment in fact is reduced by half.

 $00:12:10.700 \rightarrow 00:12:12.640$ And then they compare this curve

 $00:12:12.640 \rightarrow 00:12:15.080$ with all the measured confounders,

 $00:12:15.080 \rightarrow 00:12:16.760$ like year and a location,

00:12:16.760 --> 00:12:20.323 location of birth, year of birth, et cetera.

 $00{:}12{:}21{.}348 \dashrightarrow 00{:}12{:}25{.}020$ And then you compare it with the corresponding coefficients

 $00:12:25.020 \longrightarrow 00:12:30.020$ of those variables in the model

 $00:12:30.800 \rightarrow 00:12:35.800$ and then they just plot these in the same figure.

 $00:12:36.580 \rightarrow 00:12:39.260$ What is supposed to show is that look,

 $00:12:39.260 \rightarrow 00:12:42.360$ this is the point where the treatment effect

 $00:12:42.360 \longrightarrow 00:12:44.100$ is reduced by half,

 $00:12:44.100 \rightarrow 00:12:47.120$ and this is about the same strength

 $00:12:47.120 \longrightarrow 00:12:50.093$ as location or birth alone.

00:12:50.093 --> 00:12:53.730 So, if you think your unmeasured confounder is in some sense

 $00:12:53.730 \rightarrow 00:12:57.950$ as strong as the location or the year of birth,

 $00:12:57.950 \rightarrow 00:13:00.590$ then it is possible that the treatment infact,

 $00:13:00.590 \rightarrow 00:13:03.993$ is half of what it is estimated to be.

 $00{:}13{:}05{.}020 \dashrightarrow 00{:}13{:}07{.}760$ Okay, so it's a pretty neat way

 $00:13:07.760 \longrightarrow 00:13:10.503$ to present a sensitivity analysis.

 $00:13:12.220 \rightarrow 00:13:13.550$ So in this example, you see,

 $00:13:13.550 \rightarrow 00:13:16.730$ there's three components of sensitivity analysis.

 $00:13:16.730 \longrightarrow 00:13:19.137$ First is model augmentation.

 $00{:}13{:}19{.}137 \dashrightarrow 00{:}13{:}23{.}510$ And you need to expand the model used by primary analysis

 $00:13:23.510 \rightarrow 00:13:26.230$ to allow for unmeasured confounding.

 $00:13:26.230 \rightarrow 00:13:29.620$ Second, you need to do statistical inference.

 $00{:}13{:}29.620 \dashrightarrow 00{:}13{:}31.840$ So you vary the sensitivity parameter,

 $00:13:31.840 \longrightarrow 00:13:33.340$ estimate the effect,

 $00:13:33.340 \rightarrow 00:13:36.490$ and then control some statistical errors.

 $00:13:36.490 \longrightarrow 00:13:38.116$ So what they did

00:13:38.116 --> 00:13:42.260 is, it's they essentially varied lambda and delta,

 $00:13:42.260 \rightarrow 00:13:45.220$ and they estimated the average treatment effect

 $00:13:45.220 \rightarrow 00:13:46.813$ under that lambda and delta.

 $00{:}13{:}48{.}510$ --> $00{:}13{:}52{.}160$ And the third component is to interpret the results.

 $00:13:52.160 \rightarrow 00:13:55.930$ So this paper relied on that calibration plot

 $00:13:55.930 \longrightarrow 00:13:57.830$ for that purpose.

 $00:13:57.830 \longrightarrow 00:14:00.630$ But this is often quite a tricky

00:14:00.630 --> 00:14:03.800 because the sensitivity analysis is complicated

 $00:14:04.860 \longrightarrow 00:14:07.400$ as we need to probe different directions

00:14:07.400 --> 00:14:09.090 of unmeasured confounding.

 $00{:}14{:}09{.}090$ --> $00{:}14{:}13{.}540$ So the interpretation is actually not always straightforward

 $00:14:13.540 \rightarrow 00:14:17.173$ and sometimes can be quite complicated.

 $00:14:19.230 \rightarrow 00:14:23.350$ There did you have there do exist two issues

 $00:14:23.350 \longrightarrow 00:14:24.813$ with this analysis.

 $00:14:25.790 \rightarrow 00:14:29.630$ So this is just the model and rewriting it.

 $00{:}14{:}29{.}630 \dashrightarrow 00{:}14{:}33{.}350$ The first issue is that actually the sensitivity parameters

00:14:33.350 --> 00:14:34.490 lambda and Dota,

 $00:14:34.490 \longrightarrow 00:14:37.740$ where we vary in a sensitivity analysis

 $00:14:37.740 \longrightarrow 00:14:40.740$ are identifiable from the observed data.

 $00:14:40.740 \rightarrow 00:14:44.320$ This is because this is a perfect parametric model.

00:14:44.320 --> 00:14:47.380 And then it's not constructed in any way

 $00:14:47.380 \longrightarrow 00:14:51.490$ so that these lambda and delta are not identifiable.

 $00:14:51.490 \longrightarrow 00:14:52.690$ In fact, in the next slide,

 $00:14:52.690 \rightarrow 00:14:55.170$ I'm going to show you some empirical evidence

 $00{:}14{:}55{.}170 \dashrightarrow 00{:}14{:}58{.}890$ that you can actually estimate these two parameters.

 $00:14:58.890 \rightarrow 00:15:02.160$ So, logically it is inconsistent for us

 $00:15:02.160 \longrightarrow 00:15:04.630$ to vary the sensitivity parameter.

 $00:15:04.630 \rightarrow 00:15:07.317$ Because if we truly believe in this model

 $00:15:07.317 \rightarrow 00:15:08.960$ and the data actually tell us what the values

 $00{:}15{:}08{.}960 \dashrightarrow 00{:}15{:}10{.}110$ of lambda and delta is.

 $00{:}15{:}11.010 \dashrightarrow 00{:}15{:}12.850$ So this is the similar criticism

 $00:15:12.850 \rightarrow 00:15:17.850$ that for Hattman selection model, for example.

 $00{:}15{:}20.010 \dashrightarrow 00{:}15{:}22.590$ The second issue is a bit subtle

 $00:15:22.590 \longrightarrow 00:15:24.660$ is that in a calibration plot,

 $00:15:24.660 \rightarrow 00:15:27.420$ what they did is they use the partial R squared

 $00{:}15{:}27{.}420 \dashrightarrow 00{:}15{:}32{.}420$ as a way to measure lambda and delta

 $00:15:32.690 \rightarrow 00:15:35.780$ in a more interpretable way

00:15:35.780 --> 00:15:38.460 But actually the partial R squared for the observed

 $00{:}15{:}38{.}460{\:}-{>}00{:}15{:}42{.}410$ and unobserved confounders are not directly comparable.

 $00{:}15{:}42{.}410 \dashrightarrow 00{:}15{:}45{.}920$ This is because they're they use different reference model

 $00:15:45.920 \longrightarrow 00:15:47.670$ to start with.

00:15:47.670 --> 00:15:50.090 So, actually you need to be quite careful

 $00{:}15{:}50{.}090 \dashrightarrow 00{:}15{:}54{.}087$ about these interpretation this calibration quotes.

 $00{:}15{:}56{.}150 \dashrightarrow 00{:}16{:}00{.}990$ So, here is what I promised that suggests

 $00:16:00.990 \longrightarrow 00:16:02.410$ that you can actually identify

 $00:16:02.410 \longrightarrow 00:16:05.810$ these two sensitivity parameters lambda and delta.

 $00{:}16{:}05{.}810 \dashrightarrow 00{:}16{:}07{.}600$ So here the red dots

 $00{:}16{:}07.600 \dashrightarrow 00{:}16{:}10.560$ are the maximum likelihood estimators.

 $00:16:10.560 \rightarrow 00:16:14.020$ And then these solid curves this regions,

 $00:16:14.020 \rightarrow 00:16:15.950$ or the rejection,

 $00:16:15.950 \dashrightarrow 00:16:20.370$ or I should say acceptance region

 $00:16:20.370 \longrightarrow 00:16:23.080$ for the likelihood ratio test.

 $00:16:23.080 \longrightarrow 00:16:25.900$ So this is at level 0.50,

 $00:16:25.900 \rightarrow 00:16:29.640$ this is 0.10, this is 0.05.

 $00:16:29.640 \rightarrow 00:16:34.000$ There is a symmetry around the origin that's

 $00:16:34.000 \rightarrow 00:16:37.270$ because the U number is symmetric.

 $00:16:37.270 \longrightarrow 00:16:40.680$ So, lambda like delta is the same

00:16:40.680 --> 00:16:43.024 as minus lambda minus delta.

 $00:16:43.024 \rightarrow 00:16:44.470$ But what you see

 $00:16:44.470 \rightarrow 00:16:47.130$ is that you can actually estimate lambda and delta

 $00:16:47.130 \longrightarrow 00:16:49.780$ and you can sort of estimate it

 $00:16:49.780 \longrightarrow 00:16:53.050$ to be in a certain region.

 $00:16:53.050 \rightarrow 00:16:55.620$ So, something a bit interesting here

 $00:16:55.620 \rightarrow 00:17:00.620$ is that there's more you can say about Delta,

 $00:17:01.050 \rightarrow 00:17:03.000$ which is the parameter for the outcome,

```
00:17:04.059 \rightarrow 00:17:06.827 than the parameter for the treatment lambda.
00:17:09.120 \longrightarrow 00:17:10.640 But in any case,
00:17:10.640 --> 00:17:12.790 it didn't look like we can just vary
00:17:12.790 \rightarrow 00:17:16.030 this parameter lambda delta freely in this space
00:17:16.030 \rightarrow 00:17:18.719 and then expect to get different results
00:17:18.719 \rightarrow 00:17:22.510 for each each point.
00:17:22.510 \rightarrow 00:17:24.910 What we actually can get is some estimate
00:17:24.910 \longrightarrow 00:17:27.023 of this sensitivity parameters.
00:17:27.920 \longrightarrow 00:17:30.100 So the lesson here is that
00:17:30.100 \rightarrow 00:17:32.480 if you use a parametric sensitivity models,
00:17:32.480 \rightarrow 00:17:34.900 then they need to be carefully constructed
00:17:34.900 \rightarrow 00:17:37.143 to avoid these kind of issues.
00:17:40.320 --> 00:17:42.760 So next I'll talk about the first component
00:17:42.760 \rightarrow 00:17:44.430 of the sensitivity analysis,
00:17:44.430 \rightarrow 00:17:46.693 which is your sensitivity model.
00:17:47.750 --> 00:17:50.680 So very generally,
00:17:50.680 \rightarrow 00:17:53.560 if you think about what is the sensitivity model,
00:17:53.560 \rightarrow 00:17:58.560 is essentially it's a model for the full data F,
00:18:00.270 \rightarrow 00:18:03.140 that include some things that are not observed.
00:18:03.140 \longrightarrow 00:18:04.780 So, what we are trying to do here
00:18:04.780 \longrightarrow 00:18:07.650 is to infer the full data distribution
00:18:07.650 \rightarrow 00:18:11.470 from some observed data, O.
00:18:11.470 \longrightarrow 00:18:14.220 So a sensitivity model is basically
00:18:14.220 --> 00:18:18.060 a family of distributions of the full data,
00:18:18.060 \rightarrow 00:18:22.730 is parameterized by two parameters theta and eta.
00:18:22.730 \rightarrow 00:18:26.610 So, I'm using eta to stand for the sensitivity pa-
rameters
00:18:26.610 \rightarrow 00:18:28.810 and theta is some other parameters
00:18:28.810 \rightarrow 00:18:31.293 that parameterize the distribution.
00:18:32.600 --> 00:18:36.090 So the sensitivity model needs to satisfy two prop-
```

12

erties.

00:18:37.685 --> 00:18:39.701 So first of all,

 $00{:}18{:}39{.}701 \dashrightarrow 00{:}18{:}44{.}180$ if we set the sensitivity parameter et a to be equal to zero,

 $00{:}18{:}44{.}180 \dashrightarrow 00{:}18{:}47{.}576$ then that should correspond to our primary analysis

 $00:18:47.576 \longrightarrow 00:18:48.570$ assuming no unmeasured confounders.

 $00:18:48.570 \longrightarrow 00:18:50.513$ So I call this augmentation.

 $00:18:51.410 \rightarrow 00:18:55.960$ A second property is that given the value of the

 $00:18:55.960 \longrightarrow 00:18:58.740$ of this sensitivity prior to eta,

 $00{:}18{:}58{.}740 \dashrightarrow 00{:}19{:}03{.}410$ then we can actually identify this parameters data

 $00{:}19{:}03{.}410 \dashrightarrow 00{:}19{:}05{.}550$ from the observed data.

 $00:19:05.550 \rightarrow 00:19:08.080$ So this is sort of a minimal assumption.

00:19:08.080 --> 00:19:10.783 Otherwise, this model is simply too rich,

00:19:12.424 --> 00:19:14.820 and so I call model identifiability.

00:19:14.820 --> 00:19:17.700 So the statistical problem in sensitivity analysis

 $00{:}19{:}17{.}700 \dashrightarrow 00{:}19{:}20{.}140$ is that if I give you the value of eta

 $00:19:20.140 \longrightarrow 00:19:22.700$ or the range of eta,

 $00:19:22.700 \rightarrow 00:19:25.730$ can you use observed data to make inference

 $00:19:25.730 \rightarrow 00:19:28.520$ about some causal parameter that is a function

 $00:19:28.520 \longrightarrow 00:19:30.383$ of the theta and eta.

 $00{:}19{:}31{.}910 \dashrightarrow 00{:}19{:}36{.}910$ Okay, so this is a very general abstraction

 $00:19:37.310 \rightarrow 00:19:40.793$ of what we have seen in the previous example.

 $00:19:42.720 \longrightarrow 00:19:45.090$ But it's a bit too general.

00:19:45.090 --> 00:19:48.600 So let's make it slightly more concrete

 $00{:}19{:}48.600 \dashrightarrow 00{:}19{:}53.423$ by understanding these observational equivalence causes.

 $00:19:54.720 \rightarrow 00:19:57.500$ So essentially, what we're trying to do

 $00:19:57.500 \rightarrow 00:19:59.200$ is we observe some data,

 $00{:}19{:}59{.}200 \dashrightarrow 00{:}20{:}01{.}870$ but then we know there's an underlying full data

 $00:20:01.870 \longrightarrow 00:20:04.870$ some other observe.

00:20:04.870 --> 00:20:07.610 And instead of just modeling the observed data,

 $00:20:07.610 \longrightarrow 00:20:10.163$ we're modeling the full data set.

00:20:10.163 --> 00:20:13.870 So that makes our model quite rich,

```
00{:}20{:}13.870 --> 00{:}20{:}16.743 because we're modeling something that are all observed.
```

 $00:20:17.640 \rightarrow 00:20:20.560$ For that purpose is useful to define this

 $00:20:20.560 \rightarrow 00:20:23.870$ observationally equivalence relation

00:20:23.870 --> 00:20:25.983 between two full data distribution,

 $00:20:26.900 \rightarrow 00:20:29.560$ which just means that their implied

 $00:20:29.560 \rightarrow 00:20:33.840$ observed data distributions are exactly the same.

 $00:20:33.840 \longrightarrow 00:20:38.840$ So we write this as this approximate equal

 $00:20:39.050 \rightarrow 00:20:43.160$ to this equivalence symbol.

 $00:20:43.160 \longrightarrow 00:20:45.490$ So then we can define the equivalence class

 $00{:}20{:}45{.}490 \dashrightarrow 00{:}20{:}48{.}100$ of a distribution of a full data distribution,

 $00:20:48.100 \rightarrow 00:20:51.380$ which are all the other full data distributions

 $00:20:51.380 \rightarrow 00:20:54.530$ in this family that are observationally equivalent

 $00:20:54.530 \longrightarrow 00:20:56.393$ to that distribution.

 $00{:}20{:}57{.}860 \dashrightarrow 00{:}21{:}01{.}907$ Then we can sort of classify these sensitivity models

 $00{:}21{:}01{.}907 \dashrightarrow 00{:}21{:}05{.}053$ based on the behavior of these equivalence classes.

 $00:21:06.930 \rightarrow 00:21:09.540$ So, what happened in the last example

 $00{:}21{:}09{.}540 \dashrightarrow 00{:}21{:}14{.}540$ is that the full data distribution full data model

00:21:14.570 --> 00:21:16.180 is not rich enough.

 $00:21:16.180 \rightarrow 00:21:19.683$ So these equivalence classes are just singleton's

00:21:19.683 --> 00:21:24.100 so can actually identify the sensitivity parameter eta

00:21:24.100 --> 00:21:25.363 from the observed data.

 $00:21:26.300 \rightarrow 00:21:30.650$ So, this makes this model testable in some sense

 $00:21:30.650 \rightarrow 00:21:33.853$ with the choice of sensitivity parameter testable,

 $00:21:34.862 \rightarrow 00:21:37.483$ and this should generally be avoided in practice.

 $00:21:39.000 \rightarrow 00:21:41.600$ Then there are the global sensitivity models

 $00:21:42.680 \rightarrow 00:21:45.650$ where you can basically freely vary

 $00:21:45.650 \longrightarrow 00:21:48.280$ the sensitivity parameter eta.

 $00:21:48.280 \rightarrow 00:21:50.920$ And for any eta you can always find the theta

 $00:21:50.920 \longrightarrow 00:21:53.960$ such that it is observational equivalent

 $00:21:53.960 \longrightarrow 00:21:55.443$ to where you started from.

 $00:21:57.140 \rightarrow 00:22:01.130$ And then even nicer models the separable model

 $00:22:01.130 \longrightarrow 00:22:04.090$ where basically, this eta,

 $00:22:04.090 \rightarrow 00:22:07.416$ the sensitivity parameter doesn't change

 $00:22:07.416 \rightarrow 00:22:11.720$ the observation of the observed data distribution.

 $00:22:11.720 \longrightarrow 00:22:14.140$ So for any theta and eta,

 $00:22:14.140 \rightarrow 00:22:16.883$ theta and eta is equivalent to theta and zero.

 $00:22:17.730 \longrightarrow 00:22:22.119$ So these are really nice models to work with.

 $00{:}22{:}22{.}119 \dashrightarrow 00{:}22{:}25{.}880$ So understand the difference between global models

 $00{:}22{:}25.880 \dashrightarrow 00{:}22{:}28.060$ and separable models.

 $00{:}22{:}28.060$ --> $00{:}22{:}32.410$ So basically, it's just that they have different shapes

 $00:22:33.659 \rightarrow 00:22:37.480$ of the equivalence classes.

00:22:37.480 --> 00:22:39.540 So for separable models,

 $00:22:39.540 \longrightarrow 00:22:41.630$ these equivalence classes,

 $00:22:41.630 \rightarrow 00:22:45.320$ needs to be perpendicular to the theta axis.

00:22:46.350 --> 00:22:50.263 But that's not needed for global sensitivity models.

 $00{:}22{:}53{.}300$ --> $00{:}22{:}56{.}930$ So I've talked about what a sensitivity model means

 $00:22:56.930 \rightarrow 00:22:59.970$ and some basic properties of it,

 $00:22:59.970 \rightarrow 00:23:02.240$ but haven't talked about how to build them.

 $00{:}23{:}02{.}240 \dashrightarrow 00{:}23{:}05{.}362$ So generally, in this setup,

 $00:23:05.362 \rightarrow 00:23:07.590$ there's three ways to build a sensitivity model.

 $00:23:07.590 \rightarrow 00:23:09.200$ And then they essentially correspond

 $00{:}23{:}09{.}200 \dashrightarrow 00{:}23{:}11{.}010$ with different factorizations

 $00:23:11.010 \longrightarrow 00:23:13.420$ of the full data distribution.

 $00{:}23{:}13{.}420 \dashrightarrow 00{:}23{:}15{.}400$ So there's a simultaneous model

 $00:23:15.400 \rightarrow 00:23:18.730$ that tries to factorize distribution this way.

 $00:23:18.730 \rightarrow 00:23:22.250$ So introduces unmeasured confounder, U,

 $00:23:22.250 \rightarrow 00:23:23.920$ and then you need to model

 $00:23:23.920 \rightarrow 00:23:26.393$ these three conditional probabilities.

 $00{:}23{:}27.495 \dashrightarrow 00{:}23{:}30.651$ There's also the treatment model

 $00{:}23{:}30{.}651$ --> $00{:}23{:}35{.}450$ that doesn't rely on this unmeasured confounder U.

00:23:35.450 --> 00:23:38.550 But whether you need to specify is the distribution

 $00{:}23{:}38{.}550 \dashrightarrow 00{:}23{:}42{.}373$ of the treatment given the unmeasured cofounders and x.

 $00{:}23{:}43{.}524 \dashrightarrow 00{:}23{:}46{.}350$ And once you've specified that you can use Bayes formula

 $00{:}23{:}46{.}350 \dashrightarrow 00{:}23{:}47{.}913$ to get this part.

 $00{:}23{:}49{.}920 \dashrightarrow 00{:}23{:}53{.}829$ And then there's the outcome model that factorizes

 $00{:}23{:}53{.}829 \dashrightarrow 00{:}23{:}56{.}530$ this distribution in the other way.

 $00:23:56.530 \rightarrow 00:24:00.020$ So this is basically the propensity score

 $00:24:00.020 \rightarrow 00:24:03.330$ and the third turn is what we need to specify

 $00:24:03.330 \rightarrow 00:24:05.830$ it's a sensitivity parameter.

 $00{:}24{:}05{.}830 \dashrightarrow 00{:}24{:}08{.}900$ So in the missing data literature,

00:24:08.900 --> 00:24:10.970 second model kind of model

 $00:24:10.970 \longrightarrow 00:24:13.137$ is usually called selection model.

 $00:24:13.137 \rightarrow 00:24:15.680$ And the third kind of models usually called

00:24:15.680 --> 00:24:17.340 pattern mixture model,

 $00{:}24{:}17{.}340 \dashrightarrow 00{:}24{:}19{.}990$ and there are other names that have been given to it.

00:24:22.730 --> 00:24:26.260 And basically different sensitivity models,

 $00:24:26.260 \rightarrow 00:24:29.530$ they amount to different ways of specifying these

 $00:24:30.700 \rightarrow 00:24:32.970$ either non identifiable distributions,

 $00{:}24{:}32{.}970 \dashrightarrow 00{:}24{:}36{.}520$ which are these ones that are underlined.

 $00:24:36.520 \rightarrow 00:24:41.520$ A good review is this report by a committee

00:24:41.580 --> 00:24:44.983 organized by the National Research Council.

 $00:24:46.043 \rightarrow 00:24:49.560$ This ongoing review paper that we're writing

00:24:49.560 --> 00:24:54.063 also gives a comprehensive review of many models

 $00{:}24{:}54{.}063 \dashrightarrow 00{:}24{:}58{.}313$ that have been proposed using these factorizations.

 $00:25:00.169 \rightarrow 00:25:03.170$ Okay, so that's about the sensitivity model.

 $00:25:03.170 \rightarrow 00:25:06.683$ The next component is statistical inference.

00:25:11.480 --> 00:25:14.020 Things get a little bit tricky here,

 $00{:}25{:}14.020 \dashrightarrow 00{:}25{:}16.670$ because there are two kinds of inference

 $00{:}25{:}16.670 \dashrightarrow 00{:}25{:}19.250$ or two modes of inference we can talk about

 $00:25:19.250 \longrightarrow 00:25:20.880$ in this study.

 $00{:}25{:}20{.}880$ --> $00{:}25{:}24{.}490$ So, the first mode of inference is point identify inference.

 $00{:}25{:}24{.}490 \dashrightarrow 00{:}25{:}27{.}200$ So you only care about a fixed value

 $00{:}25{:}27{.}200 \dashrightarrow 00{:}25{:}29{.}187$ of the sensitivity parameter eta.

 $00{:}25{:}31{.}503 \dashrightarrow 00{:}25{:}33{.}620$ And the second kind of inference

00:25:33.620 --> 00:25:36.170 is partial identified inference,

 $00{:}25{:}36{.}170 \dashrightarrow 00{:}25{:}40{.}390$ where you perform the statistical inference simultaneously

 $00:25:40.390 \rightarrow 00:25:43.730$ for a range of security parameters eta.

 $00:25:43.730 \longrightarrow 00:25:45.963$ And that range H is given to you.

 $00:25:50.330 \longrightarrow 00:25:53.910$ And in these different modes of inferences,

 $00:25:53.910 \longrightarrow 00:25:56.940$ it comes differences to core guarantees.

 $00:25:56.940 \rightarrow 00:26:01.640$ So for point identified inference usually let's say

00:26:02.700 --> 00:26:04.080 for interval estimators,

 $00:26:04.080 \longrightarrow 00:26:07.840$ you want to construct confidence intervals.

 $00{:}26{:}07{.}840 \dashrightarrow 00{:}26{:}12{.}260$ And these confidence intervals depend on the observed theta

 $00:26:12.260 \rightarrow 00:26:15.290$ and the sensitivity parameter which

 $00{:}26{:}15{.}290 \dashrightarrow 00{:}26{:}17{.}390$ your last to use

00:26:17.390 --> 00:26:19.760 in a point of identified inference

 $00{:}26{:}19.760 \dashrightarrow 00{:}26{:}22.810$ and it must cover the true parameter

 $00:26:22.810 \rightarrow 00:26:25.270$ with one minus alpha probability

 $00{:}26{:}25{.}270 \dashrightarrow 00{:}26{:}28{.}130$ for all the distributions in your model.

 $00:26:28.130 \longrightarrow 00:26:29.410$ Okay that's the infimum.

 $00:26:30.250 \rightarrow 00:26:34.630$ But for partial identified inference,

 $00:26:34.630 \longrightarrow 00:26:37.630$ you're only allowed to use an interval

 $00:26:37.630 \rightarrow 00:26:39.723$ that depends on the range, H.

 $00{:}26{:}40.880 \dashrightarrow 00{:}26{:}43.173$ So, it cannot depend on a specific values

 $00:26:43.173 \longrightarrow 00:26:45.720$ of the sensitivity parameter,

 $00:26:45.720 \rightarrow 00:26:50.480$ because you only know eta is in this range H.

 $00:26:50.480 \rightarrow 00:26:55.480$ It need to satisfy this very similar criteria.

 $00:26:55.530 \rightarrow 00:26:59.230$ So I call this intervals that satisfy this criteria

 $00:26:59.230 \longrightarrow 00:27:01.000$ in the sensitivity interval.

 $00:27:01.000 \rightarrow 00:27:03.300$ But in the literature people have also called this

 $00{:}27{:}03{.}300 \dashrightarrow 00{:}27{:}06{.}833$ uncertainty interval and or just confidence interval.

 $00:27:07.840 \longrightarrow 00:27:11.060$ But to make it different from the first case,

 $00:27:11.060 \rightarrow 00:27:13.160$ we're calling a sensitivity interval here.

 $00:27:14.610 \rightarrow 00:27:19.200$ So you can see that these two equations,

00:27:19.200 --> 00:27:21.510 two criterias look very similar,

 $00{:}27{:}21{.}510$ --> $00{:}27{:}25{.}250$ besides just that this interval needs to depend on the range

 $00{:}27{:}25{.}250$ --> $00{:}27{:}28{.}970$ instead of a particular value of the sensitivity parameter.

00:27:28.970 --> 00:27:31.000 But actually, they're quite different.

 $00:27:31.000 \rightarrow 00:27:32.763$ This is usually much wider.

 $00:27:33.750 \longrightarrow 00:27:34.603$ The reason is,

 $00{:}27{:}35{.}707 \dashrightarrow 00{:}27{:}37{.}250$ you can actually write an equivalent form

 $00:27:37.250 \longrightarrow 00:27:38.803$ of this equation one,

 $00:27:39.909 \rightarrow 00:27:44.510$ because this only depends on the observed data

 $00:27:44.510 \longrightarrow 00:27:46.170$ and the range H.

 $00:27:46.170 \longrightarrow 00:27:48.610$ Then for every theta in that,

 $00:27:48.610 \rightarrow 00:27:51.710$ sorry for every eta in that range H,

00:27:51.710 - 00:27:55.607 is missing here, eta in H and also

 $00{:}27{:}55{.}607$ --> $00{:}27{:}59{.}760$ that's observationally equivalent to a two distribution.

 $00{:}27{:}59.760 \dashrightarrow 00{:}28{:}02.055$ This interval also needs to cover

 $00:28:02.055 \rightarrow 00:28:05.823$ the corresponding theta parameter.

 $00:28:07.160 \longrightarrow 00:28:08.030$ So in that sense,

 $00:28:08.030 \rightarrow 00:28:12.240$ this is a much stronger guarantee that you have.

 $00:28:16.112 \longrightarrow 00:28:20.773$ So, in terms of the statistical methods,

 $00{:}28{:}20{.}773 \dashrightarrow 00{:}28{:}25{.}243$ point identified inference is usually quite straightforward.

 $00:28:26.290 \rightarrow 00:28:28.540$ It's very similar to our primary analysis.

 $00{:}28{:}28{.}540 \dashrightarrow 00{:}28{:}32{.}070$ So, primary analysis just assumes this et a equals to zero,

 $00{:}28{:}32.070 \dashrightarrow 00{:}28{:}36.050$ but this sensitivity analysis assumes eta is known.

00:28:36.050 --> 00:28:38.340 So usually you just you can just plug in

 $00:28:38.340 \rightarrow 00:28:41.810$ this eta in some way as an offset to your model.

00:28:41.810 --> 00:28:44.680 And then everything works out in almost the same way

 $00:28:44.680 \longrightarrow 00:28:46.253$ as a primary analysis.

 $00:28:47.590 \rightarrow 00:28:49.930$ But for partially identified analysis,

 $00:28:49.930 \rightarrow 00:28:54.510$ things become quite more challenging.

 $00:28:54.510 \rightarrow 00:28:57.860$ And there are several methods several approaches

 $00{:}28{:}57{.}860 \dashrightarrow 00{:}28{:}59{.}063$ that you can take.

00:29:00.260 --> 00:29:04.960 So, essentially there are two big classes of methods,

 $00:29:04.960 \longrightarrow 00:29:07.610$ one is bound estimation,

 $00:29:07.610 \rightarrow 00:29:11.010$ one is combining point identified inference.

 $00:29:11.010 \longrightarrow 00:29:13.660$ So, for bond estimation,

 $00{:}29{:}13.660 \dashrightarrow 00{:}29{:}17.720$ it tries to directly make inference about the two ends

 $00:29:17.720 \longrightarrow 00:29:21.060$ of this partial identify region.

00:29:21.060 --> 00:29:26.060 So, this set this is the region of the parameter beta

 $00:29:26.330 \rightarrow 00:29:28.840$ that are sort of indistinguishable,

00:29:28.840 --> 00:29:33.543 if I only know this sensitivity parameter eta is in H.

 $00{:}29{:}34{.}912$ --> $00{:}29{:}39{.}912$ If we can somehow directly estimate the infimum and supremum

 $00:29:40.060 \rightarrow 00:29:43.740$ of this in this set,

 $00:29:43.740 \longrightarrow 00:29:46.300$ but then that gotta get us a way

 $00:29:46.300 \rightarrow 00:29:48.553$ to make partial identified inference.

 $00:29:50.470 \longrightarrow 00:29:53.170$ The second method is basically

 $00{:}29{:}53{.}170$ --> $00{:}29{:}58{.}170$ to try to combine the results of point identified inference.

 $00{:}29{:}59{.}350 \dashrightarrow 00{:}30{:}02{.}410$ The main idea is to sort of construct

 $00:30:02.410 \longrightarrow 00:30:05.190$ let's say interval estimators,

 $00:30:05.190 \longrightarrow 00:30:08.090$ for each individual sensitivity parameter

 $00:30:08.090 \longrightarrow 00:30:10.680$ and then take a union of them.

 $00:30:10.680 \dashrightarrow 00:30:13.630$ So, these are the two broad approaches

 $00:30:13.630 \dashrightarrow 00:30:15.973$ to the partially identified inference.

 $00:30:17.610 \longrightarrow 00:30:20.150$ And so, within the first approach

 $00:30:20.150 \longrightarrow 00:30:22.010$ the bound estimation approach,

 $00:30:22.010 \longrightarrow 00:30:24.730$ there are also several variety of,

 $00:30:24.730 \rightarrow 00:30:26.700$ there are several possible methods

00:30:26.700 --> 00:30:28.163 depending on your problem.

 $00:30:29.480 \longrightarrow 00:30:31.470$ So, the first problem,

 $00:30:31.470 \rightarrow 00:30:34.770$ the first method is called separable balance.

 $00{:}30{:}34{.}770$ --> $00{:}30{:}38{.}930$ But before that, let's just slightly change our notation

 $00{:}30{:}38{.}930 \dashrightarrow 00{:}30{:}43{.}930$ and parameterize this range H by a hyper parameter gamma.

 $00:30:46.526 \rightarrow 00:30:51.526$ So, this is useful when we outline these methods.

 $00:30:51.830 \rightarrow 00:30:54.800$ And then this beta L of gamma,

 $00:30:54.800 \rightarrow 00:30:59.683$ this is the lower end of the partial identify region.

 $00:31:00.910 \dashrightarrow 00:31:04.913$ So the first method is called separable bounds.

 $00{:}31{:}05{.}937 \dashrightarrow 00{:}31{:}10{.}937$ What it tries to do is to write this lower end

00:31:11.418 --> 00:31:15.370 as a function of beta star and gamma,

 $00:31:15.370 \dashrightarrow 00:31:19.853$ where beta star is your primary analysis estimate.

00:31:20.930 --> 00:31:23.650 So let's say theta star zero

 $00{:}31{:}23.650 \dashrightarrow 00{:}31{:}26.550$ is what you would do in a primary analysis

 $00{:}31{:}26{.}550 \dashrightarrow 00{:}31{:}30{.}413$ that is observationally equivalent to the true distribution.

 $00{:}31{:}31{.}910$ --> $00{:}31{:}36{.}910$ And then, if beta star is the corresponding causal effect,

 $00:31:37.030 \longrightarrow 00:31:38.563$ from that model,

 $00:31:39.420 \longrightarrow 00:31:42.380$ and if somehow can write this lower end

 $00:31:42.380 \rightarrow 00:31:45.666$ as a function of beta star and gamma

 $00:31:45.666 \rightarrow 00:31:47.160$ and the function is known,

 $00:31:47.160 \longrightarrow 00:31:49.670$ then our life is quite easy,

 $00:31:49.670 \rightarrow 00:31:52.540$ because we already know how to make inference

 $00:31:52.540 \rightarrow 00:31:55.360$ about beta star from the primary analysis.

00:31:55.360 - 00:31:57.230 And all we need to do is just plug in

 $00:31:57.230 \longrightarrow 00:31:59.200$ that beta star in this formula,

 $00{:}31{:}59{.}200 \dashrightarrow 00{:}32{:}00{.}400$ and then we're all done.

 $00:32:01.810 \longrightarrow 00:32:05.540$ And we call this separable because it allows us

 $00:32:05.540 \dashrightarrow 00:32:09.140$ to separate the primary analysis

 $00:32:09.140 \dashrightarrow 00:32:11.330$ from the sensitivity analysis.

 $00{:}32{:}11{.}330 \dashrightarrow 00{:}32{:}14{.}940$ And statistical inference becomes a trivial extension

 $00:32:14.940 \longrightarrow 00:32:16.940$ of the primary analysis.

 $00:32:16.940 \rightarrow 00:32:20.470$ So, some examples of this kind of method

 $00:32:20.470 \longrightarrow 00:32:23.650$ include the classical cornfields bound

 $00:32:25.680 \longrightarrow 00:32:27.150$ and the E-value,

 $00:32:27.150 \longrightarrow 00:32:29.320$ if you have heard about them,

 $00{:}32{:}29{.}320 \dashrightarrow 00{:}32{:}31{.}340$ and E-value seems quite popular

 $00:32:31.340 \longrightarrow 00:32:33.980$ these days at demonology.

 $00:32:36.870 \longrightarrow 00:32:40.949$ The second type of bound estimation

 $00:32:40.949 \longrightarrow 00:32:44.975$ is called tractable bounds.

 $00:32:44.975 \longrightarrow 00:32:47.600$ So, in these cases,

 $00:32:47.600 \rightarrow 00:32:51.620$ we may derive this lower bound as a function

 $00:32:51.620 \longrightarrow 00:32:54.300$ of theta star and gamma.

 $00:32:54.300 \rightarrow 00:32:58.020$ So we are not able to reduce it to just depend

 $00:32:58.020 \longrightarrow 00:33:00.360$ on beta star the causal effect

00:33:00.360 --> 00:33:04.029 under no unmeasured confounding,

 $00:33:04.029 \rightarrow 00:33:06.660$ but we're able to express in terms of theta star.

 $00{:}33{:}06{.}660$ --> $00{:}33{:}10{.}720$ And then the function gl is also some practical functions

 $00:33:10.720 \longrightarrow 00:33:12.760$ that we can compute.

 $00{:}33{:}12.760$ --> $00{:}33{:}17.170$ And then this also makes our lives quite a lot easier,

 $00:33:17.170 \rightarrow 00:33:21.149$ because we can just replace this theta star,

 $00{:}33{:}21.149 \dashrightarrow 00{:}33{:}24.614$ which can be nonparametric can be parametric,

 $00{:}33{:}24.614 \dashrightarrow 00{:}33{:}26.973$ by its empirical estimate.

 $00:33:28.110 \longrightarrow 00:33:31.310$ And, often in these cases,

 $00{:}33{:}31{.}310 \dashrightarrow 00{:}33{:}34{.}670$ we can find some central limit theorems

 $00:33:34.670 \rightarrow 00:33:37.930$ for the corresponding sample estimator,

 $00:33:37.930 \longrightarrow 00:33:41.750$ such that the sample estimator of the bounds

 $00{:}33{:}41.750 \dashrightarrow 00{:}33{:}46.190$ converges to its truth at root and rate

 $00{:}33{:}46.190 \dashrightarrow 00{:}33{:}49.453$ and it follows the normal limit.

 $00:33:50.925 \rightarrow 00:33:55.240$ And then if we can estimate this standard error,

 $00:33:55.240 \rightarrow 00:33:58.482$ then we can use this central limit theorem

 $00{:}33{:}58{.}482 \dashrightarrow 00{:}34{:}02{.}480$ to make partial identified inference

 $00{:}34{:}02{.}480 \dashrightarrow 00{:}34{:}04{.}363$ because we can estimate the bounds.

 $00:34:06.925 \rightarrow 00:34:08.630$ There's some examples in the literature,

 $00:34:08.630 \dashrightarrow 00:34:11.093$ you're familiar with these papers.

 $00:34:12.110 \longrightarrow 00:34:14.230$ But one thing to be careful about

 $00{:}34{:}14{.}230 \dashrightarrow 00{:}34{:}16{.}390$ these kind of tractable bounds

 $00:34:16.390 \rightarrow 00:34:20.790$ is that things that get a little bit tricky

 $00:34:20.790 \rightarrow 00:34:23.740$ with syntactic theory.

00:34:23.740 --> 00:34:26.960 This is because in a syntactic theory,

 $00{:}34{:}26{.}960 \dashrightarrow 00{:}34{:}30{.}220$ the confidence intervals or the sensitivity intervals

 $00{:}34{:}30{.}220 \dashrightarrow 00{:}34{:}31{.}750$ in this case,

 $00:34:31.750 \dashrightarrow 00:34:36.743$ can be point wise or uniform in terms of the sample size.

```
00:34:38.210 \rightarrow 00:34:42.887 So it's possible that if the convergence,
00:34:45.350 \rightarrow 00:34:48.925 if there are statistical guarantee is point wise,
00:34:48.925 \rightarrow 00:34:53.925 then you sometimes in extreme cases,
00:34:55.725 \rightarrow 00:34:58.190 even with very large sample size,
00:34:58.190 \rightarrow 00:35:01.160 they're still exist data distributions
00:35:01.160 \rightarrow 00:35:03.343 such that your coverage is very poor.
00:35:04.670 \rightarrow 00:35:07.770 So this point is discussed very heavily
00:35:07.770 -> 00:35:09.810 in econometrics literature.
00:35:09.810 \rightarrow 00:35:13.223 And these are some references.
00:35:15.040 \rightarrow 00:35:18.300 So that's the second type of method
00:35:18.300 \rightarrow 00:35:20.853 in the first broad approach.
00:35:22.010 --> 00:35:24.727 The third kind of method
00:35:24.727 \rightarrow 00:35:28.470 is called stochastic programming.
00:35:28.470 \rightarrow 00:35:33.470 And this applies when the model is separable.
00:35:34.338 \rightarrow 00:35:39.338 So and we can write this parameter we're inter-
ested in
00:35:40.400 \dashrightarrow 00:35:43.460 as some expectation of some function
00:35:43.460 \rightarrow 00:35:46.763 of the theta and the sensitivity parameter eta.
00:35:48.140 \longrightarrow 00:35:49.603 Okay, so in this case,
00:35:50.890 \rightarrow 00:35:53.540 the bound becomes the optimal value
00:35:53.540 \longrightarrow 00:35:56.110 for an optimization problem,
00:35:56.110 \rightarrow 00:35:59.753 which you want to minimize expectation of some
function.
00:36:00.730 \rightarrow 00:36:04.630 And the parameter in this function is in some set
00:36:04.630 \longrightarrow 00:36:06.113 as defined by U.
```

 $00{:}36{:}07{.}660$ --> $00{:}36{:}10{.}560$ So, this is known as stochastic programming.

 $00{:}36{:}10{.}560$ --> $00{:}36{:}14{.}000$ So, this type of problem is known as stochastic programming

 $00{:}36{:}14.000 \dashrightarrow 00{:}36{:}15.653$ in the optimization literature.

 $00:36:16.900 \longrightarrow 00:36:18.980$ And what people do there

 $00:36:18.980 \longrightarrow 00:36:22.047$ is they sample from the distribution,

 $00{:}36{:}22.047 \dashrightarrow 00{:}36{:}25.860$ and then they try to use it to solve the empirical version

 $00:36:25.860 \rightarrow 00:36:28.900$ and try to use that as approximate solution

 $00:36:28.900 \rightarrow 00:36:32.640$ to this population optimization problem,

 $00:36:32.640 \rightarrow 00:36:36.100$ which we can't directly U value evaluate.

 $00{:}36{:}36{.}100 \dashrightarrow 00{:}36{:}38{.}950$ And the method is called sample average approximation

 $00:36:38.950 \dashrightarrow 00:36:40.603$ in the optimization literature.

 $00{:}36{:}42.470 \dashrightarrow 00{:}36{:}44.393$ So, what is shown there.

00:36:46.515 --> 00:36:51.260 And Alex Shapiro did a lot of great work on this,

 $00:36:51.260 \rightarrow 00:36:56.260$ is that nice problems with compact set age,

 $00:36:56.540 \rightarrow 00:36:58.916$ and everything is euclidean.

 $00:36:58.916 \longrightarrow 00:37:00.530$ So it's finite dimensional.

 $00:37:00.530 \longrightarrow 00:37:02.830$ Then you actually have a central limit theorem

 $00:37:03.730 \longrightarrow 00:37:05.693$ for the sample optimal value.

00:37:07.150 --> 00:37:11.820 And this link, is a link between sensitivity analysis

 $00{:}37{:}11{.}820 \dashrightarrow 00{:}37{:}15{.}753$ and stochastic programming is made in this paper

 $00:37:15.753 \rightarrow 00:37:17.263$ by Tudball et al.

00:37:20.330 --> 00:37:22.890 Okay, so that's the first broad approach

 $00:37:22.890 \longrightarrow 00:37:25.003$ with doing bounds estimation.

 $00{:}37{:}26{.}290$ --> $00{:}37{:}29{.}330$ The second broad approach is to combine the results

 $00:37:29.330 \rightarrow 00:37:31.423$ of points identified inference.

 $00:37:32.370 \rightarrow 00:37:36.930$ So, the first possibility is to take a union

 $00{:}37{:}36{.}930 \dashrightarrow 00{:}37{:}40{.}020$ of the individual confidence intervals.

 $00{:}37{:}40{.}020 \dashrightarrow 00{:}37{:}43{.}332$ Suppose these are the confidence intervals

 $00{:}37{:}43.332 \dashrightarrow 00{:}37{:}45.282$ when the sensitivity from eta is given.

 $00:37:46.510 \rightarrow 00:37:51.134$ Then, it is very simple to just apply a union bound

 $00{:}37{:}51{.}134 \dashrightarrow 00{:}37{:}54{.}060$ and to show that if you take a union

 $00:37:54.060 \rightarrow 00:37:57.460$ of these individual confidence intervals,

 $00:37:57.460 \rightarrow 00:38:01.100$ then they should satisfy the criteria

00:38:01.100 -> 00:38:03.350 for sensitivity interval.

 $00{:}38{:}03{.}350 \dashrightarrow 00{:}38{:}06{.}994$ So now, if you take a union this interval only depends

00:38:06.994 --> 00:38:07.960 on the range H,

 $00:38:07.960 \rightarrow 00:38:11.511$ and then you just apply the union bound

 $00{:}38{:}11{.}511 \dashrightarrow 00{:}38{:}13{.}933$ and get this formula from the first.

 $00:38:17.080 \rightarrow 00:38:19.610$ And this can be slightly improved

 $00:38:19.610 \rightarrow 00:38:23.270$ to cover not just these parameters,

 $00:38:23.270 \rightarrow 00:38:27.210$ but also the entire partial identified region

 $00:38:27.210 \longrightarrow 00:38:29.910$ if the intervals if the confidence intervals

 $00:38:29.910 \longrightarrow 00:38:32.653$ have the same tail probabilities.

 $00:38:35.050 \rightarrow 00:38:36.923$ So we discussed this in our paper.

 $00:38:38.653 \rightarrow 00:38:43.350$ And here, so, all we need to do

 $00:38:43.350 \longrightarrow 00:38:45.113$ is to compute this union.

 $00:38:45.970 \rightarrow 00:38:49.230$ So, which essentially is an optimization problem

 $00:38:49.230 \rightarrow 00:38:52.480$ we'd like to minimize the lower bound,

 $00{:}38{:}52{.}480 \dashrightarrow 00{:}38{:}57{.}257$ that the lower confidence point Cl of eta over eta in H

 $00:38:58.988 \rightarrow 00:39:00.688$ and similarly for the upper bound.

00:39:01.710 --> 00:39:04.550 And usually using of syntactic theory,

 $00:39:04.550 \rightarrow 00:39:09.340$ we can get some normal base confidence

 $00:39:09.340 \longrightarrow 00:39:12.440$ intervals for each fixed eta.

 $00:39:12.440 \rightarrow 00:39:14.430$ And then we just need to optimize

 $00:39:14.430 \rightarrow 00:39:19.430$ this thing this confidence interval over eta.

 $00:39:19.940 \longrightarrow 00:39:21.950$ But for many problems this can be

 $00:39{:}21.950$ --> $00{:}39{:}26.440$ computationally challenging because the standard errors

 $00:39:26.440 \longrightarrow 00:39:29.000$ are usually quite complicated

 $00:39:30.057 \rightarrow 00:39:32.370$ and it has some very nonlinear dependence

 $00{:}39{:}32{.}370 \dashrightarrow 00{:}39{:}34{.}010$ on the parameter eta.

00:39:34.010 - > 00:39:36.153 So optimizing this can be tricky.

 $00{:}39{:}39{.}854 \dashrightarrow 00{:}39{:}43{.}840$ This is where another method of percentile bootstrap method

 $00:39:43.840 \rightarrow 00:39:46.600$ can greatly simplify the problem.

 $00:39:46.600 \rightarrow 00:39:51.600$ It's proposed by this paper that we wrote,

 $00:39:52.710 \rightarrow 00:39:55.920$ and what it does is instead of using

 $00:39:55.920 \rightarrow 00:40:00.770$ the syntactic confidence interval for fixed eta,

 $00:40:00.770 \rightarrow 00:40:03.790$ we use the percentile bootstrap interval.

 $00:40:03.790 \longrightarrow 00:40:06.290$ Where we take theta samples,

 $00:40:06.290 \rightarrow 00:40:10.850$ and then you estimate the causal effect beta

 $00:40:10.850 \rightarrow 00:40:14.057$ in each resample and then take quantiles.

 $00:40:15.230 \rightarrow 00:40:19.330$ Okay, so if you use this confidence interval,

 $00:40:19.330 \longrightarrow 00:40:24.330$ then there is a general,

 $00{:}40{:}24{.}540 \dashrightarrow 00{:}40{:}28{.}700$ generalized minimax inequality that allows us to construct

 $00:40:28.700 \rightarrow 00:40:31.873$ this percentile bootstrap sensitivity interval.

 $00:40:32.870 \longrightarrow 00:40:36.890$ So what it does is this thing in the inside

 $00:40:36.890 \rightarrow 00:40:41.010$ is just the union of these percentile construct

 $00:40:41.010 \longrightarrow 00:40:44.910$ intervals for fixed eta,

 $00:40:44.910 \longrightarrow 00:40:48.063$ taken over eta in H.

 $00:40:48.910 \rightarrow 00:40:51.480$ And then this generalized minimax inequality

 $00:40:51.480 \rightarrow 00:40:56.480$ allows us to interchange the infimum with quanto

 $00{:}40{:}56{.}700 \dashrightarrow 00{:}40{:}59{.}940$ and the supremum of a quanto.

 $00{:}40{:}59{.}940 \dashrightarrow 00{:}41{:}01{.}340$ Okay, so the infimum of a quanto

 $00{:}41{:}01{.}340 \dashrightarrow 00{:}41{:}04{.}303$ is greater than equal to the quanto of infimum

 $00:41:05.215 \longrightarrow 00:41:07.050$ and that it's always true.

00:41:07.050 --> 00:41:08.550 So it's just a generalization

00:41:08.550 --> 00:41:11.233 of the familia minimax inequality.

00:41:12.560 --> 00:41:15.760 Now, if you look at this order interval,

 $00:41:15.760 \longrightarrow 00:41:18.580$ this is much easier to compute,

- 00:41:18.580 --> 00:41:20.210 because all it needs to do
- 00:41:20.210 --> 00:41:25.098 is you gather data resample,

 $00:41:25.098 \rightarrow 00:41:29.430$ then you just need to repeat method 1.3.

 $00{:}41{:}29{.}430 \dashrightarrow 00{:}41{:}33{.}860$ So just get the infimum of the point estimate

 $00{:}41{:}33{.}860$ --> $00{:}41{:}37{.}460$ for that resample and the supremum for that resample.

 $00{:}41{:}37{.}460 \dashrightarrow 00{:}41{:}40{.}150$ Then you do this over many, many resamples

 $00:41:41.215 \rightarrow 00:41:43.550$ and then you take the quantiles of the infimum,

 $00{:}41{:}43.550 \dashrightarrow 00{:}41{:}47.898$ lower of the infimum and upper quantile of the supremum,

 $00:41:47.898 \rightarrow 00:41:49.690$ and then you're done.

 $00:41:49.690 \rightarrow 00:41:53.370$ And because this union sensitivity interval

 $00:41:53.370 \longrightarrow 00:41:54.920$ is always valid,

 $00:41:54.920 \longrightarrow 00:41:58.330$ if the individual confidence intervals are valid.

00:41:58.330 --> 00:42:02.370 So you almost got a very you got a free lunch

 $00:42:02.370 \longrightarrow 00:42:03.380$ in some sense,

 $00:42:03.380 \rightarrow 00:42:06.260$ you don't need to show any heavy theory.

 $00:42:06.260 \longrightarrow 00:42:07.760$ All you need to show is that

 $00:42:07.760 \rightarrow 00:42:10.767$ these percentile bootstrap intervals are valid

 $00:42:10.767 \rightarrow 00:42:13.340$ for each fixed eta,

 $00{:}42{:}13{.}340 \dashrightarrow 00{:}42{:}18{.}340$ which are much easier to establish in real problems.

00:42:22.630 --> 00:42:24.770 And this is sort of selfish,

 $00:42:24.770 \longrightarrow 00:42:27.200$ where I'd like to compare this idea

 $00:42:27.200 \rightarrow 00:42:29.140$ with Efron's bootstrap,

 $00:42:29.140 \longrightarrow 00:42:31.140$ where what was found there

 $00:42:31.140 \rightarrow 00:42:33.370$ is that you've got a point estimator,

00:42:33.370 --> 00:42:34.990 you resample your data,

 $00{:}42{:}34{.}990 \dashrightarrow 00{:}42{:}38{.}230$ and then many times and then use bootstrap

 $00:42:38.230 \longrightarrow 00:42:39.780$ to get the confidence interval.

 $00:42:40.808 \rightarrow 00:42:44.030$ For partially identified inference,

 $00:42:44.030 \longrightarrow 00:42:45.940$ you need to do a bit more.

 $00{:}42{:}45{.}940 \dashrightarrow 00{:}42{:}48{.}140$ So for each resample you need

 $00:42:48.140 \rightarrow 00:42:51.550$ to get extrema optimal estimator.

 $00:42:51.550 \rightarrow 00:42:55.176$ Then the minimax inequality allows you just

 $00:42:55.176 \rightarrow 00:43:00.160$ sort of transfer the intuition from the bootstrap,

 $00:43:00.160 \longrightarrow 00:43:02.480$ for bootstrap from point identification

 $00:43:02.480 \longrightarrow 00:43:04.063$ to partial identification.

 $00:43:07.560 \longrightarrow 00:43:10.553$ So the third approach in this,

 $00:43:11.408 \rightarrow 00:43:13.574$ is a third method in this general approach

 $00:43:13.574 \rightarrow 00:43:15.010$ is to take the supremum of key value.

00:43:15.010 --> 00:43:18.090 And this is used in Rosenbaum sensitivity analysis.

 $00:43:18.090 \rightarrow 00:43:19.823$ If you're familiar with that.

00:43:21.680 --> 00:43:24.490 Essentially it's a hypothesis testing analog

 $00:43:24.490 \longrightarrow 00:43:27.193$ of the Union confidence interval method.

 $00:43:28.540 \longrightarrow 00:43:29.880$ What it does is that

00:43:29.880 --> 00:43:34.860 if you have individually valid P values for a fixed eta,

 $00{:}43{:}34{.}860 \dashrightarrow 00{:}43{:}37{.}670$ then you just take the supremum of the P values

 $00:43:37.670 \longrightarrow 00:43:41.380$ over all the etas in this range.

 $00{:}43{:}41{.}380 \dashrightarrow 00{:}43{:}44{.}693$ And that can be used for partially identified inference.

 $00{:}43{:}45{.}547 \dashrightarrow 00{:}43{:}48{.}680$ So what Rosenbaum did,

 $00:43:48.680 \rightarrow 00:43:51.990$ and Rosenbaum is really a pioneer in this area

 $00:43:51.990 \rightarrow 00:43:55.620$ in the partially identify sensitivity analysis.

 $00:43:55.620 \rightarrow 00:43:59.410$ So what he did was use randomization tests

 $00:43:59.410 \longrightarrow 00:44:01.073$ to construct these key values.

 $00{:}44{:}02{.}540 \dashrightarrow 00{:}44{:}06{.}570$ So, this is usually done for matched observational studies

 $00{:}44{:}06{.}570 \dashrightarrow 00{:}44{:}11{.}570$ and the inside of this line of work

 $00:44:11.790 \longrightarrow 00:44:16.044$ is that you can use these inequalities

00:44:16.044 --> 00:44:18.940 particularly Holley's inequality

 $00:44:18.940 \longrightarrow 00:44:21.500$ in probabilistic combinatorics

 $00{:}44{:}21{.}500$ --> $00{:}44{:}25{.}113$ to efficiently compute these supremum of the P values.

 $00:44:26.440 \longrightarrow 00:44:29.740$ So, usually what is done there is that

 $00:44:29.740 \rightarrow 00:44:32.470$ the Holley's inequality gives you a way

 $00:44:32.470 \rightarrow 00:44:36.983$ to upper bound the distribution of a that,

 $00:44:38.680 \rightarrow 00:44:40.920$ to upper bound family of distributions

 $00:44:42.080 \rightarrow 00:44:45.424$ in the stochastic dominance sense.

 $00{:}44{:}45{.}424 \dashrightarrow 00{:}44{:}49{.}793$ So, that is used to get these supremum of the P values.

 $00{:}44{:}51.070 \dashrightarrow 00{:}44{:}56.070$ And so, basically the idea is to use some theoretical tool

 $00:44:58.520 \rightarrow 00:45:02.023$ to simplify the computation.

 $00:45:05.366 \rightarrow 00:45:08.140$ Okay, so that's the statistical inference.

 $00{:}45{:}08{.}140 \dashrightarrow 00{:}45{:}10{.}270$ The third part, the third component

 $00:45:10.270 \rightarrow 00:45:13.190$ is interpretation of sensitivity analysis.

 $00:45:13.190 \rightarrow 00:45:16.950$ And this is the area that we actually really need

 $00:45:16.950 \longrightarrow 00:45:19.293$ a lot of good work at the moment.

 $00{:}45{:}20{.}460 \dashrightarrow 00{:}45{:}25{.}460$ So, overall, there are two good ideas that seem to work,

 $00{:}45{:}25{.}770 \dashrightarrow 00{:}45{:}27{.}560$ that seem to improve the interpretation

 $00:45:27.560 \longrightarrow 00:45:28.873$ of sensitivity analysis.

 $00:45:29.990 \longrightarrow 00:45:31.690$ The first is sensitivity value,

 $00{:}45{:}31.690 \dashrightarrow 00{:}45{:}35.203$ the second is the calibration using measured confounders.

 $00:45:36.080 \rightarrow 00:45:38.460$ So the sensitivity value is basically

 $00:45:38.460 \rightarrow 00:45:41.062$ the value of the sensitivity parameter

 $00:45:41.062 \longrightarrow 00:45:42.170$ or the hyper parameter,

 $00{:}45{:}42.170$ --> $00{:}45{:}46.163$ where some qualitative conclusions about your study change.

 $00:45:47.603 \rightarrow 00:45:51.360$ And in our motivating example,

00:45:51.360 --> 00:45:54.920 this is where the estimated average treatment effect

 $00{:}45{:}54{.}920 \dashrightarrow 00{:}45{:}58{.}640$ is reduced by half an Rosenbaum sensitivity analysis

 $00:45:58.640 \longrightarrow 00:46:00.140$ if you are familiar with that.

 $00:46:01.079 \rightarrow 00:46:02.820$ This is where, this is the value of the gamma

 $00:46:02.820 \longrightarrow 00:46:03.913$ in his model,

 $00{:}46{:}04{.}766$ --> $00{:}46{:}07{.}763$ where we can no longer reject the causal null hypothesis.

 $00:46:09.640 \rightarrow 00:46:13.610$ So, this is can be seen as kind of an extension

 $00:46:13.610 \longrightarrow 00:46:15.763$ of the idea of a P value.

00:46:16.660 --> 00:46:19.330 So P value is used for primary analysis,

 $00:46:19.330 \rightarrow 00:46:21.680$ so assuming no unmeasure confounding,

 $00:46:21.680 \rightarrow 00:46:24.100$ and then for sensitivity analysis,

 $00:46:24.100 \rightarrow 00:46:26.953$ you can use the sensitivity value to sort of sorry,

 $00{:}46{:}30{.}142 \dashrightarrow 00{:}46{:}32{.}142$ that's the P value it basically measures

 $00:46:33.293 \rightarrow 00:46:36.270$ how likely your results,

 $00{:}46{:}36{.}270 \dashrightarrow 00{:}46{:}39{.}230$ your sort of false rejection is due to

 $00:46:39.230 \longrightarrow 00:46:43.600$ sort of random chance.

 $00:46:43.600 \rightarrow 00:46:45.610$ But then what a sensitivity value does

 $00{:}46{:}45{.}610 \dashrightarrow 00{:}46{:}50{.}590$ is measures how much sort of how sensitive your resources is

 $00:46:50.590 \rightarrow 00:46:53.026$ in some sense, so, how much deviation

 $00:46:53.026 \rightarrow 00:46:54.940$ from the unmeasured confounding it takes

 $00:46:54.940 \longrightarrow 00:46:57.113$ to alter your conclusion.

 $00:46:58.350 \longrightarrow 00:47:00.668$ And for sensitivity value,

 $00:47:00.668 \rightarrow 00:47:03.950$ there often exists a phase transition phenomenon

 $00{:}47{:}03{.}950 \dashrightarrow 00{:}47{:}05{.}873$ for partially identified inference.

00:47:07.020 --> 00:47:11.290 This is because if you take your hyper parameter gamma

 $00:47:11.290 \longrightarrow 00:47:12.850$ to be very large,

 $00:47:12.850 \longrightarrow 00:47:15.210$ then essentially your partially identify region

 $00:47:15.210 \longrightarrow 00:47:17.060$ already covered in null.

 $00:47:17.060 \rightarrow 00:47:20.330$ So, no matter how large your sample size is

 $00:47:20.330 \longrightarrow 00:47:21.853$ you can never reject null.

 $00{:}47{:}23.240 \dashrightarrow 00{:}47{:}26.310$ So, this is sort of an interesting phenomenon

 $00:47:27.632 \rightarrow 00:47:32.070$ and explained first discovered by Rosenbaum

 $00:47:32.070 \rightarrow 00:47:37.070$ in this paper I wrote also clarified some problems

 $00:47:37.610 \longrightarrow 00:47:42.153$ some issues in both the phase transition.

 $00:47:44.080 \longrightarrow 00:47:46.370$ So, the second idea is the calibration

 $00:47:46.370 \longrightarrow 00:47:48.650$ using measured confounders.

 $00:47:48.650 \rightarrow 00:47:50.690$ So, you have already seen an example

 $00:47:50.690 \rightarrow 00:47:54.300$ in a motivating study.

00:47:54.300 --> 00:47:59.180 It's really a very necessary and practical solution

 $00:47:59.180 \longrightarrow 00:48:01.086$ to quantify the sensitivity,

00:48:01.086 --> 00:48:05.066 because it's not really very useful if you tell people,

 $00:48:05.066 \rightarrow 00:48:08.230$ we are sensitive at gamma equals to two,

 $00:48:08.230 \longrightarrow 00:48:09.400$ what does that really mean?

 $00:48:09.400 \rightarrow 00:48:12.568$ That depends on some mathematical model.

 $00:48:12.568 \rightarrow 00:48:14.950$ But if we can somehow compare that

 $00{:}48{:}14{.}950 \dashrightarrow 00{:}48{:}17{.}483$ with what we do observe,

 $00{:}48{:}18{.}390 \dashrightarrow 00{:}48{:}19{.}510$ and we have,

 $00:48:19.510 \rightarrow 00:48:22.950$ often the practitioners have some good sense

 $00{:}48{:}22{.}950$ --> $00{:}48{:}26{.}800$ about what are the important confounders and what are not.

 $00:48:26.800 \rightarrow 00:48:30.610$ Then this really gives us a way to calibrate

 $00{:}48{:}30{.}610$ --> $00{:}48{:}35{.}150$ and strengthen the conclusions of a sensitivity analysis.

 $00{:}48{:}35{.}150$ --> $00{:}48{:}37{.}990$ But unfortunately, although there are some good heuristics

 $00:48:37.990 \longrightarrow 00:48:39.373$ about the calibration,

 $00:48:40.366 \rightarrow 00:48:43.890$ they're often suffer from some subtle issues,

 $00:48:43.890 \longrightarrow 00:48:46.100$ like the ones that I described

 $00:48:46.100 \longrightarrow 00:48:47.550$ in the beginning of the talk.

00:48:48.627 --> 00:48:51.113 If you carefully parameterize your models

 $00:48:51.113 \longrightarrow 00:48:52.863$ this can become easier.

 $00:48:53.768 \rightarrow 00:48:56.080$ And this recent paper sort of explored this

 $00{:}48{:}56{.}080 \dashrightarrow 00{:}49{:}00{.}540$ in terms of linear models.

 $00:49:00.540 \rightarrow 00:49:03.670$ But really there's not a unifying framework

 $00{:}49{:}03.670 \dashrightarrow 00{:}49{:}07.770$ then you can cover more general cases

 $00:49:07.770 \longrightarrow 00:49:09.913$ and lots of work are needed.

00:49:11.220 --> 00:49:13.200 And when I was writing the slides,

00:49:13.200 - 00:49:15.450 I thought maybe what we really need

 $00:49:15.450 \longrightarrow 00:49:17.530$ is to somehow build this calibration

 $00:49:17.530 \longrightarrow 00:49:19.570$ into the sensitivity model.

 $00:49:19.570 \longrightarrow 00:49:21.890$ Because currently our workflow is that

 $00:49:21.890 \rightarrow 00:49:23.930$ we assume a sensitivity model,

 $00:49:23.930 \rightarrow 00:49:26.380$ and we see where things get changed,

 $00:49:26.380 \longrightarrow 00:49:28.890$ and then we try to interpret those values

 $00:49:28.890 \longrightarrow 00:49:30.760$ where things get changed.

00:49:30.760 --> 00:49:34.328 But suppose if we somehow build that,

 $00:49:34.328 \longrightarrow 00:49:37.750$ if we left the range H eta to be defined

 $00{:}49{:}37{.}750 \dashrightarrow 00{:}49{:}40{.}480$ in terms of this calibration.

00:49:40.480 --> 00:49:45.210 Perhaps gamma directly means some kind of comparisons

 $00:49:45.210 \rightarrow 00:49:48.630$ that measured confounders this would solve some

 $00{:}49{:}48.630 \dashrightarrow 00{:}49{:}50.410$ a lot of the issues.

00:49:50.410 - 00:49:52.930 This is just a thought I came up

 $00:49:52.930 \rightarrow 00:49:54.703$ when I was preparing for this talk.

00:49:56.230 --> 00:49:58.536 Okay, so to summarize,

 $00:49:58.536 \rightarrow 00:50:01.460$ so there is number of messages,

 $00:50:01.460 \longrightarrow 00:50:04.980$ which I hope you can take home.

 $00{:}50{:}04{.}980 \dashrightarrow 00{:}50{:}07{.}860$ There are three components of a sensitivity analysis.

00:50:07.860 --> 00:50:10.600 Model augmentations, statistical inference

 $00:50:10.600 \rightarrow 00:50:13.840$ and the interpretation of sensitivity analysis.

00:50:13.840 --> 00:50:17.160 So sensitivity model is about parameterizing,

 $00:50:17.160 \longrightarrow 00:50:19.210$ the full data distribution.

 $00{:}50{:}19{.}210 \dashrightarrow 00{:}50{:}21{.}780$ And that's basically about over parameterizing

 $00{:}50{:}22.660 \dashrightarrow 00{:}50{:}24.540$ the observed data distribution.

 $00{:}50{:}24{.}540 \dashrightarrow 00{:}50{:}26{.}150$ And you can understand these models

 $00:50:26.150 \longrightarrow 00:50:28.603$ by the observational equivalence classes.

00:50:29.930 --> 00:50:32.940 You can get different model augmentations

 $00:50:32.940 \rightarrow 00:50:35.427$ by factorizing the distribution differently

00:50:35.427 --> 00:50:37.670 and specify different models

 $00:50:37.670 \dashrightarrow 00:50:39.873$ for those that are on identifiable.

 $00{:}50{:}41{.}392 \dashrightarrow 00{:}50{:}45{.}330$ And there's a difference between point identified inference

 $00:50:45.330 \rightarrow 00:50:47.410$ and partially identified inference,

 $00{:}50{:}47{.}410$ --> $00{:}50{:}50{.}693$ and partially identified inference is usually much harder.

 $00{:}50{:}51{.}667 \dashrightarrow 00{:}50{:}55{.}090$ And there are two general approaches

 $00{:}50{:}55{.}090 \dashrightarrow 00{:}50{:}56{.}700$ for partially identified inference,

 $00{:}50{:}56{.}700$ --> $00{:}51{:}01{.}023$ bound estimation and combining point identified inference.

 $00:51:02.290 \rightarrow 00:51:04.970$ For interpretation of sensitivity analysis,

 $00{:}51{:}04{.}970 \dashrightarrow 00{:}51{:}07{.}992$ there seem to be two good ideas so far,

 $00:51:07.992 \rightarrow 00:51:10.450$ to use the sensitivity value,

 $00{:}51{:}10{.}450 \dashrightarrow 00{:}51{:}12{.}850$ and to calibrate that sensitivity value

 $00{:}51{:}12.850 \dashrightarrow 00{:}51{:}14.513$ using measured confounders.

00:51:16.040 --> 00:51:17.680 But overall,

 $00:51:17.680 \rightarrow 00:51:22.680$ I'd say this is still a very,

 $00:51:22.712 \rightarrow 00:51:25.690$ this is still a very open area

 $00:51:25.690 \longrightarrow 00:51:28.250$ that a lot of work is needed.

 $00:51:28.250 \rightarrow 00:51:30.840$ Even for this prototypical example

 $00{:}51{:}30{.}840 \dashrightarrow 00{:}51{:}33{.}410$ that people have studied for decades,

 $00{:}51{:}33{.}410 \dashrightarrow 00{:}51{:}35{.}910$ it seems there's still a lot of questions

 $00:51:35.910 \longrightarrow 00:51:37.113$ that are unresolved.

 $00:51:38.070 \longrightarrow 00:51:41.342$ And there are methods that need to be developed

 $00:51:41.342 \longrightarrow 00:51:44.860$ for this sensitivity analysis

 $00:51:44.860 \rightarrow 00:51:48.030$ to be regularly used in practice.

 $00:51:48.030 \rightarrow 00:51:50.850$ And then there are many other related problems

 $00{:}51{:}50.850 \dashrightarrow 00{:}51{:}52.810$ in missing data in causal inference

 $00{:}51{:}53{.}730$ --> $00{:}51{:}57{.}703$ that need to see more developments of sensitivity analysis.

 $00:51:58.810 \longrightarrow 00:52:00.820$ So that's the end of my talk.

 $00:52:00.820 \longrightarrow 00:52:03.423$ And there are some references that are used.

 $00:52:04.630 \rightarrow 00:52:08.140$ I'm happy to take any questions.

 $00:52:08.140 \dashrightarrow 00:52:11.167$ Still have about four minutes left.

00:52:11.167 --> 00:52:12.641 - Thank you.

 $00:52:12.641 \longrightarrow 00:52:14.307$ That yeah, thank you.

00:52:14.307 --> 00:52:17.180 Thank you, I'm sorry I couldn't introduce you earlier,

 $00{:}52{:}17.180 \dashrightarrow 00{:}52{:}20.627$ but my connection but it did not to work.

 $00{:}52{:}20{.}627 \dashrightarrow 00{:}52{:}23{.}153$ So we have time for a couple of questions.

 $00{:}52{:}25{.}560 \dashrightarrow 00{:}52{:}28{.}820$ You can write the question in the chat box,

 $00:52:28.820 \longrightarrow 00:52:30.663$ or just unmute yourselves.

 $00:52:43.482 \rightarrow 00:52:44.315$ Any questions?

 $00:52:53.670 \dashrightarrow 00:52:55.962$ I guess I'll start with a question.

00:52:55.962 --> 00:53:00.120 Yeah I guess I'll start with a question.

 $00:53:00.120 \rightarrow 00:53:03.890$ This was a great connection between I think,

 $00:53:03.890 \rightarrow 00:53:05.770$ sensitivity analysis literature

 $00{:}53{:}05{.}770 \dashrightarrow 00{:}53{:}07{.}493$ and the missing data literature.

00:53:08.600 --> 00:53:11.982 Which I think it's kind of overlooked.

 $00{:}53{:}11{.}982 \dashrightarrow 00{:}53{:}16{.}982$ Even when you when you run a prometric sensitivity analysis,

 $00:53:17.360 \longrightarrow 00:53:20.270$ it's really something, like most of the times

 $00:53:20.270 \dashrightarrow 00:53:22.060$ people really don't understand

 $00{:}53{:}22.060 \dashrightarrow 00{:}53{:}24.023$ how much information is given.

 $00{:}53{:}24.860$ --> $00{:}53{:}28.560$ Like, how much information the model actually gives

 $00{:}53{:}29{.}400 \dashrightarrow 00{:}53{:}31{.}660$ on the sensitivity parameters.

00:53:31.660 -> 00:53:34.080 And as you said,

 $00:53:34.080 \longrightarrow 00:53:35.530$ like it's kind of inconsistent

 $00:53:35.530 \rightarrow 00:53:37.470$ to set the sensitivity parameters

 $00:53:37.470 \longrightarrow 00:53:40.230$ when sensitivity parameters are actually identified

 $00:53:40.230 \longrightarrow 00:53:41.193$ by the model.

00:53:42.940 --> 00:53:46.190 So I think like my I guess a question of like,

 $00:53:46.190 \rightarrow 00:53:47.603$ clarifying question is,

00:53:48.670 --> 00:53:53.660 you mentioned there is this there this testable models,

 $00:53:53.660 \rightarrow 00:53:55.763$ this testable models essentially are wherein

 $00:53:55.763 \rightarrow 00:53:59.690$ the sensitivity model is such that

 $00{:}53{:}59{.}690 \dashrightarrow 00{:}54{:}03{.}620$ the sensitivity barometer are actually point identified.

00:54:03.620 --> 00:54:04.453 Right?

00:54:04.453 --> 00:54:05.286 - Yes.

 $00{:}54{:}05{.}286 \dashrightarrow 00{:}54{:}07{.}535$ So it re, so you said,

 $00:54:07.535 \rightarrow 00:54:10.850$ you reshooting use the sensitivity analysis

00:54:10.850 - 00:54:13.800 to actually to set the parameters

 $00:54:13.800 \longrightarrow 00:54:16.141$ if the sensitivity parameters

00:54:16.141 - > 00:54:18.000 are actually identified model.

00:54:18.000 --> 00:54:18.833 - Yeah.

 $00:54:18.833 \rightarrow 00:54:20.690$ - Is that what you're trying?

00:54:20.690 --> 00:54:23.480 All right, so and. - Yes, yeah.

 $00{:}54{:}23{.}480 \dashrightarrow 00{:}54{:}27{.}300$ Basically what happened there is the model is too specific,

 $00:54:27.300 \rightarrow 00:54:29.830$ and it wasn't constructed carefully.

 $00:54:29.830 \rightarrow 00:54:32.570$ So it's possible to construct parametric models

 $00:54:32.570 \rightarrow 00:54:36.770$ that are not testable that are perfectly fine.

00:54:36.770 --> 00:54:40.310 But sometimes, if you just sort of

 $00:54:40.310 \rightarrow 00:54:42.170$ write down the most natural model,

 $00:54:42.170 \rightarrow 00:54:46.400$ if it just extend what the parametric model

 $00{:}54{:}46{.}400 \dashrightarrow 00{:}54{:}50{.}883$ you used for observed data to also model full data,

 $00:54:52.100 \longrightarrow 00:54:53.780$ then you don't do it carefully,

 $00{:}54{:}53{.}780 \dashrightarrow 00{:}54{:}58{.}780$ then the entire full data distribution becomes identifiable.

 $00{:}54{:}59{.}530 \dashrightarrow 00{:}55{:}02{.}240$ So it does makes sense to treat those parameters

 $00{:}55{:}02.240 \dashrightarrow 00{:}55{:}04.580$ as sensitivity parameters.

 $00{:}55{:}04{.}580 \dashrightarrow 00{:}55{:}08{.}190$ So this kind of is a reminiscent of the discussion

 $00:55:08.190 \rightarrow 00:55:10.753$ in the 80s about the Hackmann selection model.

 $00:55:11.690 \rightarrow 00:55:13.690$ Because in that case,

 $00{:}55{:}13.690 \dashrightarrow 00{:}55{:}18.291$ there was also sir Hackmann has this great selection model

 $00:55:18.291 \rightarrow 00:55:23.200$ for reducing or getting rid of selection bias,

 $00{:}55{:}23.200 \dashrightarrow 00{:}55{:}26.560$ but it's based on very heavy parametric assumptions.

 $00{:}55{:}26{.}560 \dashrightarrow 00{:}55{:}31{.}560$ And you can adapt certainly identify the selection effect

 $00{:}55{:}31.690 \dashrightarrow 00{:}55{:}35.040$ directly from the model where you actually have no data

 $00:55:35.890 \longrightarrow 00:55:38.203$ to support that identification.

 $00:55:39.693 \rightarrow 00:55:43.513$ Which led to some criticisms in the 80s.

 $00{:}55{:}44{.}950 \dashrightarrow 00{:}55{:}49{.}950$ But I think we are seeing this things repeatedly

 $00:55:50.600 \rightarrow 00:55:53.223$ again and again in different areas.

00:55:54.940 --> 00:55:58.910 And it's, I think it's fine

 $00{:}55{:}58{.}910 \dashrightarrow 00{:}56{:}03{.}910$ to use the power metric models that are testable, actually,

 $00:56:05.090 \dashrightarrow 00:56:07.240$ if you really believe in those models,

 $00:56:07.240 \rightarrow 00:56:09.370$ but it doesn't seem that they should be used

 $00:56:09.370 \longrightarrow 00:56:11.590$ this sensitivity analysis,

 $00:56:11.590 \rightarrow 00:56:13.050$ because just logically,

 $00{:}56{:}13.050 \dashrightarrow 00{:}56{:}14.483$ it's a bit strange.

 $00{:}56{:}15{.}331 \dashrightarrow 00{:}56{:}18{.}483$ It's hard to interpret those models.

 $00:56:20.493 \rightarrow 00:56:24.347$ And but sometimes I've also seen people

 $00:56:24.347 \rightarrow 00:56:27.650$ who use the sort of parameterize the model

 $00:56:27.650 \rightarrow 00:56:30.950$ in a way that you include enough terms.

00:56:30.950 --> 00:56:34.510 So the sensitivity parameters are weakly identified

 $00{:}56{:}34{.}510$ --> $00{:}56{:}37{.}650$ in a practical example.

 $00{:}56{:}37{.}650$ --> $00{:}56{:}42{.}590$ So with a practical data set of maybe the likelihood test,

 $00{:}56{:}43.530 \dashrightarrow 00{:}56{:}46.330$ Likelihood Ratio Test rejection region,

 $00:56:46.330 \rightarrow 00:56:49.083$ that acceptance region is very, very large.

 $00:56:50.170 \rightarrow 00:56:53.420$ So there are a suggestions like that,

 $00{:}56{:}53{.}420 \dashrightarrow 00{:}56{:}58{.}330$ that kind of it's a sort of a compromise

 $00:56:58.330 \longrightarrow 00:57:01.533$ for good practice.

 $00{:}57{:}02{.}430 \dashrightarrow 00{:}57{:}06{.}330$ - Right in that case you gave it either set the parameters

 $00{:}57{:}06{.}330 \dashrightarrow 00{:}57{:}08{.}520$ and drag the causal effects,

 $00{:}57{:}08{.}520$ --> $00{:}57{:}13{.}370$ or kind of treat that as a partial identification problem

 $00{:}57{:}13{.}370 \dashrightarrow 00{:}57{:}16{.}800$ and just write use bounds or the methods

00:57:16.800 --> 00:57:18.723 you were mentioning, I guess.

00:57:19.908 --> 00:57:21.369 - Yeah.

00:57:21.369 --> 00:57:22.536 - Yep, thanks.

 $00:57:25.720 \longrightarrow 00:57:26.713$ Other questions?

 $00:57:34.367 \rightarrow 00:57:36.788$ Well I guess you can read the question?

00:57:36.788 --> 00:57:39.763 - It's a question from Kiel Sint.

00:57:40.687 --> 00:57:42.997 Sorry if I didn't pronounce your name correctly.

 $00{:}57{:}42.997 \dashrightarrow 00{:}57{:}45.620$ "In the applications of observational studies ideally,

 $00:57:45.620 \rightarrow 00:57:47.440$ what confounders should be collected

 $00:57:47.440 \rightarrow 00:57:49.440$ for sensitivity analysis,

 $00{:}57{:}49{.}440$ --> $00{:}57{:}53{.}600$ power sensitivity analysis for unmeasured confounding?"

 $00:57:53.600 \rightarrow 00:57:54.433$ Thank you.

 $00:57:54.433 \rightarrow 00:57:58.453$ So if I understand your question correctly,

 $00:58:01.250 \longrightarrow 00:58:03.780$ basically what sensitivity analysis does

 $00:58:03.780 \longrightarrow 00:58:05.910$ is you have observational study,

 $00:58:05.910 \rightarrow 00:58:08.870$ where you for already collected confounders

 $00{:}58{:}09{.}730 \dashrightarrow 00{:}58{:}12{.}010$ that you believe are important or relevant

 $00:58:13.167 \rightarrow 00:58:16.340$ that really that are real confounders,

00:58:16.340 --> 00:58:20.280 that they change the causal unchanged the treatment

 $00:58:20.280 \longrightarrow 00:58:22.200$ and the outcome.

 $00:58:22.200 \longrightarrow 00:58:24.540$ But often that's not enough.

00:58:24.540 --> 00:58:29.387 And what sensitivity analysis does is it tries to say,

 $00:58:29.387 \rightarrow 00:58:31.690$ "based on what the components already

00:58:32.927 --> 00:58:34.210 you have already collected,

 $00{:}58{:}34{.}210 \dashrightarrow 00{:}58{:}36{.}840$ what if there is still something missing

 $00:58:36.840 \longrightarrow 00:58:38.153$ that we didn't collect?

 $00:58:39.480 \rightarrow 00:58:43.508$ And then if those things behave in a certain way,

 $00:58:43.508 \rightarrow 00:58:46.640$ does that change our results?"

00:58:46.640 --> 00:58:51.640 So, I guess sensitivity analysis is always relative

 $00:58:52.110 \longrightarrow 00:58:53.930$ to a primary analysis.

 $00{:}58{:}53{.}930 \dashrightarrow 00{:}58{:}58{.}200$ So I think you should use the same set of confounders

 $00:58:58.200 \rightarrow 00:59:00.583$ that the primary analysis uses.

 $00:59:02.396 \rightarrow 00:59:07.396$ I don't see a lot of reasons to vary to say

 $00:59:09.910 \rightarrow 00:59:14.160$ use a primary analysis with more confounders,

 $00:59:14.160 \rightarrow 00:59:17.543$ but a sensitivity analysis with fewer confounders.

00:59:20.800 --> 00:59:23.340 Sensitivity analysis is really a supplement

 $00:59:23.340 \rightarrow 00:59:26.373$ to what you have in the primary analysis.

 $00:59:35.420 \longrightarrow 00:59:37.220$ - Just one more question if we have?

 $00:59:39.551 \longrightarrow 00:59:40.500$ There not.

 $00{:}59{:}40{.}500 \dashrightarrow 00{:}59{:}41{.}333$ Yes.

00:59:42.500 --> 00:59:44.027 - So from Ching Hou Soo,

00:59:45.447 --> 00:59:48.740 "
How to specify the setup sensitivity parameter gamma

 $00:59:48.740 \longrightarrow 00:59:50.193$ in the real life question?

 $00:59:51.220 \rightarrow 00:59:53.730$ When gamma is too large the inference results

 $00:59:53.730 \rightarrow 00:59:57.000$ will always be non informative?"

 $00:59:57.000 \rightarrow 00:59:59.787$ Yes, this is always a tricky problem any,

 $01:00:01.140 \rightarrow 01:00:05.930$ and essentially the sensitivity values kind of

 $01:00:05.930 \longrightarrow 01:00:08.560$ trying to get past that.

 $01:00:08.560 \longrightarrow 01:00:11.220$ So it tries to directly look at the value

 $01{:}00{:}11{.}220$ --> $01{:}00{:}15{.}210$ of this sensitivity parameter that changes your conclusion.

 $01:00:15.210 \rightarrow 01:00:18.810$ So in some sense, you don't need to specify

 $01:00:18.810 \longrightarrow 01:00:20.173$ a parameter a priori.

01:00:21.040 --> 01:00:24.760 But obviously, in the end of the day,

 $01{:}00{:}24.760 \dashrightarrow 01{:}00{:}29.760$ we need some clue about what value of sensitivity parameter

 $01:00:30.020 \longrightarrow 01:00:31.360$ is considered large.

 $01{:}00{:}31{.}360 \dashrightarrow 01{:}00{:}35{.}500$ In a practical sense, in this application.

 $01:00:35.500 \rightarrow 01:00:39.156$ That's something this calibration clause

 $01:00:39.156 \rightarrow 01:00:43.620$ this calibration analysis is trying to address.

01:00:43.620 --> 01:00:44.490 But as I said,

 $01:00:44.490 \rightarrow 01:00:47.310$ they're not perfect at the moment.

 $01:00:47.310 \rightarrow 01:00:52.310$ So for some time, now, at the least,

 $01:00:52.360 \rightarrow 01:00:55.830$ we'll have to sort of live through this and

 $01:00:55.830 \rightarrow 01:01:00.600$ or will either need to understand really

01:01:00.600 - 01:01:02.180 what the sensitivity model means,

 $01:01:02.180 \rightarrow 01:01:06.010$ and then use your domain knowledge

 $01{:}01{:}06.010 \dashrightarrow 01{:}01{:}10.460$ to set the sensitivity parameter,

 $01{:}01{:}10{.}460 \dashrightarrow 01{:}01{:}15{.}460$ or we have to use these rely on these

01:01:15.471 --> 01:01:19.323 imperfect visualization tools to calibrate analysis.

01:01:27.689 --> 01:01:28.620 - Yeah, all right.

01:01:28.620 --> 01:01:29.453 Thank you.

 $01:01:30.372 \rightarrow 01:01:33.209$ I think we need to wrap up we've run over time.

01:01:33.209 --> 01:01:36.040 So thank you again Qingyuan,

 $01:01:36.040 \rightarrow 01:01:37.850$ for sharing your work with us.

 $01{:}01{:}37.850 \dashrightarrow 01{:}01{:}40.672$ And thank you, every one for joining.

- 01:01:40.672 --> 01:01:41.780 Thank you.
- $01:01:41.780 \longrightarrow 01:01:42.960$ Bye bye.
- 01:01:42.960 --> 01:01:44.222 See you next week.
- 01:01:44.222 --> 01:01:45.325 It's a great pleasure.
- 01:01:45.325 --> 01:01:46.158 Thank you.