Alright, I think we should start, so welcome everyone and welcome to our fourth, the first seminar of the Yale Center on Content in House in for 2020, and so today we are very please that you have Dr. Xuhui Lee from the Yale School of Environment. So he's the Sara Shallenberger Brown Professor of Meteorology, he’s also a director of the Yale Center for The Earth Observation, he also received the 2015 award for outstanding achievement in Balm meteorology from the American Meteorological Society. So without further ado, we will have doctors. Xuhui Lee. Thank you, Kai and also thank you Rob for having me in this event. Let me see, how do I, can you see my screen Okay? Now, that's much better and so the work I'm presenting today is Urban Heat Island Theory Measurement and Mitigation.
0:01:51.3 — 0:01:55.23 is really a collection of things done by folks
0:01:55.23 — 0:02:00.23 in my lab, current members and also past members so far
0:02:01.66 — 0:02:05.66 of my lab, some of them are actually attending this event
0:02:06.76 — 0:02:09.93 and I noticed that this event is being recorded,
0:02:09.93 — 0:02:10.89 that’s fine with me.
0:02:10.89 — 0:02:15.08 There are a few slides where we don’t have where we can...
0:02:15.08 — 0:02:17.66 Where I showed you a sort of unpublished results
0:02:17.66 — 0:02:20.82 so if you’d like to, if you want to share this recording
0:02:20.82 — 0:02:23.79 with folks, please refrain from perhaps
0:02:23.79 — 0:02:26.853 not sharing that part to people.
0:02:32.1 — 0:02:34.82 So many of you are familiar
0:02:34.82 — 0:02:36.33 with this kind of projections right?
0:02:36.33 — 0:02:38.75 Projecting for temperature into the future
0:02:38.75 — 0:02:40.37 to the end of the century
0:02:40.37 — 0:02:45.37 depending on whether we take the aggressive mitigation
0:02:46 — 0:02:48.88 or scenario or more of a business as new your scenario
0:02:48.88 — 0:02:52.49 we will end up with very different temperature projection
0:02:52.49 — 0:02:54.81 in the low emissions scenario,
0:02:54.81 — 0:02:58.88 we expect maybe 1.5 degrees of increase, decrease dial-
0:02:58.88 — 0:03:01.24 increase near the end of the century
0:03:01.24 — 0:03:06.24 but in a more sort of aggressive emission scenario RCP 8.5,
0:03:08.31 — 0:03:13.31 the projection is that four degrees of decreases of warm-
0:03:13.62 — 0:03:15.75 towards the end of the century.
0:03:15.75 — 0:03:18.67 So that’s the kinda big picture.
0:03:18.67 — 0:03:21.65 So what I would argue is that Heat stress
0:03:21.65 — 0:03:23.42 is actually perhaps the most,
the biggest climate threat to humans
in stress associated with climate change.
The reason is simple
that we humans are warm blooded animals,
We have a biological limit we cannot overcome,
so we are warm blooded,
we keep our body temperature at a constant value
of the property 37 degrees Celsius
and in a warm climate we need to maintain
two degrees between the thick body and the skin
in order to for the metabolic heat
to get discredited in the environment right?
So that’s a physiological limit barrier
we cannot overcome if conditions
in such that we cannot maintain
a skin temperature lower than 35 degrees
then we will suffer serious health consequences
even death without of course the help of air conditioning.
So that’s the kind of the motivation
for this kind of work off
and of course we know that residents
in the Urban Environment,
urban residents suffer an additional heat stress
due to the Urban Heat Island.
This is sort of classic depiction
by Jumoke of what an urban heat Island looks like.
If you have a bicycle for example
your attach or sensor, something I would talk about it,
you’d end up with this lecture
and you move across a transect from rural to urban core.

You would record temperature variations such way

lower temperature in outside city,

as you move to the center of city

you’ll register very high temperature

while relative to high temperature

and this difference between urban

versus rural temperature temperature

is really what we call Urban Heat Island

or intensity of therapy to time.

So that’s a well accepted sort of depiction

of this phenomenon

and so this is added heat

that urban residents would experience,

and this is a sort of spatial view

for urban heat island here

actually in the city of New Haven,

the urban unite is very patchy.

I have high spots here and there and some low spots there.

So the high spots in the archaea shotguns area, right?

And then that’s this downtown area

and then near the fringe of the city

where you have a lot of trees, temperature is much lower.

So that’s the kind of urban heat island parent

that you see in New Haven.

So why Urban heat island is a concern?

Well, you can just simply consider

a probability distribution of temperature,

this is a probability distribution temperature
of maybe a rural background and Urban heat Island would shift this probability distribution just by a little bit, maybe by one degrees on average, right? But that one degree of shift in the mean would actually create a serious consequence. in terms of heatwave frequency and let’s suppose the heatwave threshold is here, now this is per heatwave threshold beyond which we will see problems with mobility and mortality and for Rural background, rural location, this is the area under this curve is your heatwave frequency. Now for urban land, the simple shift in mean due to our heat, would change that frequency a lot, we increase that frequency a lot, right? And the other thing that you should notice of course as the urban heat Island, urban residents will actually experience a record temperatures not being seen by rural residents so again rural temperature stops here on, so this is a spread. So, but in the city, you will see temperature beyond the record, right? The record registering in the background sites. So that’s also another issue that we should be concerned about Bob. So that is really the motivation for why we study the theory of urban heat island.
and why we want to come up with strategy to mitigate urban heat island, alright? So let me switch to give you a sort of review of theory of the urban heat island phenomenon. So this traits, they can be trace back to me many years ago to team Oaks textbook, in his textbook he listed the seven causes of urban heat Island of the seven, I highlight the four causes people consider it to be the major ones. The first one is increased absorption of short-wave radiation due to urban mophology and maybe due to the color of the landscape, the conventional wisdom is that urban land tend to trap more solar radiation so that’s a source of urban heat island. A second source of urban heat island of course is very easy to understand because there’s an additional heat, anthropogenic heat from anthropogenic sources from automobile driving, driving automobiles bills, converts chemical energy in fossil fuel to mechanical energy that mechanical energy eventually dissipates as heat to the environment, right? And so another important source of anthropogenic heat is a space heating. We heat our houses or use of air conditioning
and they will generate heat and dissipate heat to the environment. The third course is increased sensible heat storage on buildings and other facial structures can store energy solar energy, solar radiation energy in a daytime and that then they were released that energy at night causing nighttime urban warming, and finally not a major course is decreased evaporation You know that you’ll replace natural vegetation, replacing, replace trees with artificial impervious surface you reduce evaporative cooling power right? So those are the four sort of major causes of Urban heat Island and so the, we understand those concepts in a conceptual way, in a qualitative way for a long time and so what we did was with a few years back was try to quantify those causes in a quantitative way. We believe, we know only by quantifying those causes that will then lay the foundation for sensible sort of measure of how to mitigate Binky Don. So I need to sort of take a step back and introduce this theory called The theory of intrinsic biophysical mechanism, this theory was first developer to actually to understand how perturbation changes surface temperature, changes near surface temperature amid arm, this theory is extended to talk, to the study of urban heat Island
so some key points here.

This mechanism really is concerned with the process which how surface temperature responds to external perturbation by external perturbation,

I mean a number of things. It could be addition additional aerosols to the atmosphere that will block sunlight penetration and an intercept sunlight penetration. And it could also be a change of urban, change of landscape a land use change replacing say, forest, we some open-end or natural land by urban man so those are considered to be external perturbation and so he helped Bob understand this process.

There are two key components to that. Why is one called a local Longwave radiation feedback? And the other one is a change in energy redistribution but in the service in the overlaying atmosphere, I’m gonna explain those two processes in a little bit, the way it quantified the surface temperature response is really just to do this sort of experiment or numerical experiment and then it goes quantified through measurement as well to the surface response really is the difference between temperature of old state before the perturbation and a new state after perturbation. So that’s what the perturbation temperature signal
0:12:13 –> 0:12:16.913 is really the key here and we’re trying to quantify.
0:12:18.27 –> 0:12:20.24 So let’s take a look at,
0:12:20.24 –> 0:12:25.033 so let’s go back to the case of deforestation study, right?
0:12:26.11 –> 0:12:28.79 The interest here is motivate your part
0:12:28.79 –> 0:12:33.16 by the new trying to send whether removing trees
0:12:33.16 –> 0:12:38.16 or adding trees or warm or cool the local temperature.
0:12:38.42 –> 0:12:41.423 So I, this is my favorite numerical example.
0:12:42.64 –> 0:12:47.64 This is a actual data collected over forest in Israel,
0:12:47.64 –> 0:12:49.53 semi arid climate conditions.
0:12:49.53 –> 0:12:52.89 This is how much solar energy reaches the forest
0:12:52.89 –> 0:12:54.49 and this is how much get reflected
0:12:54.49 –> 0:12:59.49 through its albedo reflected away from the surface,
0:12:59.53 –> 0:13:03.75 some escape of course to outer space,
0:13:03.75 –> 0:13:05.4 this is just a top of atmosphere.
0:13:06.26 –> 0:13:08.33 Now if you remove the forest
0:13:08.33 –> 0:13:10.513 and replace for us with some Shrub land,
0:13:11.59 –> 0:13:14.91 shrub land is much brighter, has higher albedo
0:13:15.94 –> 0:13:17.93 and so it’s a short wave radiation
0:13:17.93 –> 0:13:22.31 well reflection will increase
0:13:22.31 –> 0:13:24.397 and so naturally you would think
0:13:24.397 –> 0:13:25.51 that the temperature would go down, right?
0:13:25.51 –> 0:13:26.76 Because now you have more
0:13:26.76 –> 0:13:31.76 or less short wave trapping solar radiation
0:13:32.15 –> 0:13:34.16 and so when the surface
0:13:34.16 –> 0:13:37.58 when we undergo what we call radiative feedback
0:13:37.58 –> 0:13:42.27 because when you have low absorption solar radiation,
0:13:42.27 –> 0:13:45.7 the surface cool and therefore they will have
0:13:45.7 –> 0:13:49.08 less Longwave radiation escaping to the from surface
0:13:49.08 –> 0:13:50.81 and eventually you will establish
0:13:50.81 –> 0:13:53.66 a new radiation liberate, right?
Cause that process, the longwave adjustment,
it’s called Longwave feedback, that’s a negative feedback
and so if you allow just Longwave a radiation exchange,
only allow radiation exchange to occur
between the surface and atmosphere,
this is you can come up with a simple prediction
So the change of straight away radiation is dead ass
that’s your perturbation signal
and the change of surface temperature Delta Ts right?
This is a parameter called Local climate sensitivity,
that’s more or less a constant the number
and so in this particular numerical example
you would predict by replacing for us Shrub land
and you expect a coin of dot four degrees
about five degrees, right?
So that’s an argument some people used
to promote deforestation,
they’re saying deforestation actually maybe a good thing
cause helps cool the local climate
because a lot because of albedo effect,
but of course that picture is not complete
because in the real world,
you not only how a radiative process irradiated feedback,
you also have too what I called energy redistribution
occurring between the surface and the atmosphere.
So there are two processes;
One is evaporation.
Evaporation is a process
where liquid water is converted to water vapor right?
0:15:23.13 –> 0:15:25.48 So that happens near, at the surface.
0:15:25.48 –> 0:15:28.27 so evaporation that will take away energy,
0:15:28.27 –> 0:15:31.28 take away late night Tiki damage that will consume
energy
0:15:31.28 –> 0:15:33.7 and then when vapor gets to the top
0:15:33.7 –> 0:15:35.64 above the atmospheric boundary layer
0:15:35.64 –> 0:15:37.39 and condenses to form cloud,
0:15:39.99 –> 0:15:43.71 So the process is a process of energy redistribution.
0:15:43.71 –> 0:15:46.43 It reduced screwed energy, taking away energy away
0:15:46.43 –> 0:15:48.88 from the surface, and then put the energy back
0:15:48.88 –> 0:15:50.61 into the atmosphere above the boundary layer.
0:15:50.61 –> 0:15:53.32 So that’s one energy redistribution process.
0:15:53.32 –> 0:15:57.44 A second energy redistribution process is connection,
0:15:57.44 –> 0:16:01.57 is really is due, is the result of an emotion result
0:16:01.57 –> 0:16:03.67 of triplet motion in the boundary layer.
0:16:03.67 –> 0:16:08.67 That process is dissipating energy from the ground
0:16:11.24 –> 0:16:13.433 to the lower atmosphere.
0:16:15.141 –> 0:16:18.3 So you can set up this kind of thought experiment
0:16:18.3 –> 0:16:23.3 to look at how the two, the processes play out, right?
0:16:24.21 –> 0:16:25.93 In this thought experiment
0:16:25.93 –> 0:16:30.59 Or you can also do this in numerical, in the motto as
well.
0:16:30.59 –> 0:16:35.59 You put a forest next to an open land
0:16:35.93 –> 0:16:40.15 and the two patches of landscape are influenced
0:16:40.15 –> 0:16:43.83 by same atmospheric conditions in terms of tempera-
ture,
0:16:43.83 –> 0:16:45.26 background temperature,
0:16:45.26 –> 0:16:49.29 in terms of incoming solar radiation, long wave radia-
tion
0:16:49.29 –> 0:16:51.15 and so basically the value
0:16:51.15 –> 0:16:53.36 that those quantities are the same
across the two patches of land at this order called a Blending height which is typically taking its first mode of great height about 50 meters to a 100 meters above the surface right? And then, so in this kind of site pair analysis all a space for a time analysis that the contrast open land the contrast in temperature which an open land and the forest land is really your, is really the deforestation signal cause that’s how we approach this particular problem, right?

And so I don’t want to get into too much of a mathematical details except to say, this is how we frame the problem, we combined what we call the one source of a model for heat transfer, surface energy balance conservation of energy at the surface to formulate our solution for surface temperature in this One source Model heat is dissipated from the ground to Reference height and using some kind of resistance analog right? So the heat of efficiency of heat flux is really proportional to temperature difference between difference in temperature between the surface and temperature at a lower atmosphere at a per landing height. So you combine those two sort of considerations. You’ll come up with a solution for surface temperature
And then you do a sort of the perturbation to decide mathematically it’s just, that’s equivalent to differentiating this equation and so you then get perturbation signal. That’s your temp deforestation signal by replacing it four of this open land, you get a temperature change, that’s the temperature change mathematically and then the temperature changes then it’s partitioned into three components. The first component has to do with changing albedo. I mentioned earlier using that Israel example, the second component has to do is back. The energy redistribution efficiency has changed due to a change of reference. So forest landscape is very rough and very efficient in generating triplets, it’s very efficient in dissipating energy by triplets but open land, it’s very smooth so it’s not as efficient. So that itself will cause change in temperature and then the third component contribution is change of energy redistribution due to evaporation change or change of evaporation and that can go either way when you compare forest to open land depending a forest cover to open land depending on which one has higher evaporation potential. So that is the approach we use to study a deforestation and it later turns out that we have two prompters here, one is this local climate sensitivity prompter
which is more or less constant but this prompt F is energy redistribution factor. Some people have done quite a bit of work on this prompter and turns out this prompers more like a property of the landscape. So for example, this is a study by Bright et al looking at Energy redistribution factor for different ecosystem. This is evergreen needle-leaf forest, deciduous broad-leaf forest evergreen broad-leaf forest and this is a two types of crop lands, rain fat irrigated and this is grassland. Typically when you compare a forest versus the grass open land, you find the energy redistribution factor much high for forest especially for tropical evergreen broad-leaf forest meaning that they are a disturbance, just external sort of perturbation will not change his temperature as much same perturbation occurring over grassland because over or at this kind of landscape, the energy is can be dissipated very quickly to the atmosphere and therefore is more resistant to change in temperature, and then later on TC from my lab did this calculation mapping the energy redistribution factor across the globe given the current distribution of vegetation types
of course and you find a high value in tropical places and low value elsewhere and then Nighttime value is much lower so there's, when you look at tables night contrast Daytime energy redistribution factors is much higher than at Nighttime meaning that same amount of changes of a disturbance would cause much higher response in temperature at nighttime than in the daytime. So that kind of day and night symmetry is also very important in the consideration of how land use change affects the surface temperature. So basically then we'd say okay well, let's just extend this to urban landscape right? We are contrasting a natural land versus urban land. That's the urban heat Island signal right? And so you go through that little model you find then now you have five contributions. One is changing the albedo or radiation convection effect, evaporation effect changing storage and change your anthropogenic heat. So a few years ago, my former student lays out, did this attribution analysis based on this model and then did a partitioning of urban heat island intensity and partition the urban heat Island intensity to different factors.
and this is a very complex plot that maybe I should show you.

I tend to just read this particular diagram. This diagram is daytime urban heat island on in situation for four cities in East, Southeast United States including where we are and so this is sort of wet climate. So and this is the modis settling observed over here. He did in intensity, this a climate model calculate intensity. This is the summation of the in individual terms, individual contributions right? So in the case of cities, this part of the world actually Albedo effect is cooling contrary to what many people believe. Turns out cities in this part of the country our axe is brighter than the background, but then the rural background is mostly forests are dark. so the Albedo effect is cooling but what's surprised us actually, this connection effect right? It turns out in this this kind of climate, this region urban land is not efficient in dissipating heat than the background forest land and so as a result of loss of convection efficiency you have an obviously a lot of warming. So it’s actually this loss efficiency dominates urban heat Island intensity,
is much stronger than the effect of loss of evaporative cooling, right?
So that's the kind of interpretation based on that model and so this kind of attribution.
This kind of practitioner is obviously very important when you've tried to formulate a mitigation strategy whether you want to say for example, you want to change our Albedo or change evaporating client trees by improving evaporation. So you can use this to help determine which one is more efficient whether Albedo of change or change of gray infrastructure or tangible green infrastructure which one gives you more cooling power.
And then so that study was done prior not always before Google earth engine error. So we've hand picked a 60 some cities and we manually select a satellite data and that was a lot of work right? But now we Google Earth Engine the marking of Urban heat island much easier. I just want to draw your attention to the work done by TC again, he used the Google App Engine to map out basically the urban heat island for all the cities in the world. You can go to this link and you can pick any city.
I can then, there’s this interface allows you, this Explorer allows you to map out local urban heat Island and also variation of time change of urban heat island or the satellite air.

Now let me switch gear here and speak about mitigation right? Mitigation and we know urban heat Island is not a a good thing, especially in hot weather conditions, it exacerbate the heat stress on our urban residents so we like to perhaps modified urban landscape to comeback, to control, to reduce the intensity of Urban heat island. So this is a sort of a summary of the kind of strategies that people are considering right?

One strategy is white roof, you basically convert a dark roof to replace dark roof with some kind of a white shiny bright material to increase Albedo so you then cool the urban climate. The other strategy is strategy promoted by the city of Chicago you know, putting green vegetation on rooftop like indicate this case is a City Hall and a third strategy is the one that our school used is to convert a rooftop to Solar Panel to cover the rooftop with Solar Panel. The benefit there is that instead of allowing radiation of turning into heat, you actually capture solar radiation.
and convert some of it into electricity and therefore avoiding heating the local environment right?

So that would also bring cooling benefits. It’s a fourth approach is to use Street trees to help cool whenever you can wherever you can plant trees to cool the local climate. So the question is which one is more effective, right?

And if so how do you quantify that before I do give you a solid quantification, I just want to draw your attention to this case in Chicago.

It turns out changing roof top albedo is not a theoretical concept, it’s actually been actively promoted in many cities, city of Chicago was one of the pioneer cities promoting this idea, promoting this approach using a brighter reflective materials to help cool the local climate to help control the local urban heat Island, this is a work done by a former student of professor Ron Smith and myself. So he quantified change in urban out Albedo in Chicago after 1995, after that notorious heat wave that kills a hundreds of people and turns out we can actually, we were able to quantify change of the citywide Albedo the city over this time period,
the city Albedo has increased by a little bit by 0.02, but, so you can actually quantify, this is a homework exercise. I'll ask my students to do when they do my class and this isn’t in my book, sort of homework exercise you know the question ask, the question we’re asking students to do is that, when the albedo, if Albedo is increased by this much estimate how much temperature reduction you get, right? So you can basically go back to that model that I presented you earlier we have not changed urban form. only what we did was just to change the roof of Albedo. So you have that single prompter problem if you put numbers together, you'll find that the 0.02 Change increase in Albedo would cause a cooling on average of 1.5 degrees Celsius. That could be quite important in the event of a heat wave. Now let me share with you the pertinent results, right? that in the case of Chicago, that’s, what’s really a local example and then we with lays work, we use climate models and in with fall, all kinds of scenarios considerations, climate consideration, climate scenarios also mitigation scenarios
0:30:32 –> 0:30:34.69 using our partition efforts.
0:30:34.69 –> 0:30:35.523 So this is a...
0:30:35.523 –> 0:30:37.493 Let me help you interpret this diagram a little bit.
0:30:37.493 –> 0:30:44.66 This is the condition for Mid summer day
0:30:42.79 –> 0:30:45.66 for cities in the United States average condition
0:30:45.66 –> 0:30:47.69 of all the cities in the United States
0:30:47.69 –> 0:30:50.14 not also the 60 some cities in the United States.
0:30:50.98 –> 0:30:54.05 So this is, would be the current background tempera-
ture.
0:30:54.05 –> 0:30:54.883 You get
0:30:56.433 –> 0:30:57.3 on a hot summer,
0:30:57.3 –> 0:31:01.57 at summer noontime in rural background,
0:31:01.57 –> 0:31:02.403 okay?
0:31:02.403 –> 0:31:05.02 And this is then the urban temperatures here
0:31:05.02 –> 0:31:06.62 on the current climate condition
0:31:06.62 –> 0:31:09.76 in a future climate near the end of century,
0:31:09.76 –> 0:31:12.43 the rural background will be up here
0:31:12.43 –> 0:31:14.24 and urban temperature would be up here.
0:31:14.24 –> 0:31:20.39 we were gonna expect this much of a temperature,
right?
0:31:20.39 –> 0:31:23.54 We referenced to current rural background
0:31:23.54 –> 0:31:27.46 and so by implementing core roofs
0:31:27.46 –> 0:31:28.78 we are, we stay in the model,
0:31:28.78 –> 0:31:33.78 we change all the roofs to core to highly reflective roofs.
0:31:34.11 –> 0:31:35.81 We get this much of cooling,
0:31:35.81 –> 0:31:38.2 that’s substacalling substantial right?
0:31:38.2 –> 0:31:42.77 Basically you raise all the urban heat Island effect
0:31:42.77 –> 0:31:45.65 and all some greenhouse effect
0:31:45.65 –> 0:31:48.42 and then we say, okay, let’s plant street trees,
0:31:48.42 –> 0:31:51.57 well, there’s only a limited space
for planting street trees, but we planted street trees in the model anywhere we can.

and also we change reflect your pavements change your pavements to reflect your material. So this is what we call additive effects, it’s like the IBL from mitigation wedge, right? People talk about when we talk about dealing with greenhouse mitigation here, you can use the same idea of a wedge idea to see the attitude of strategies for mitigating urban heat Island.

So in this is very aggressive scenario of course we can raise all the Urban heat island and greenhouse effect. We actually have some additional cooling of course, it’s highly idealized and real world, we cannot achieve this maximum cooling but it’s instructive to show that indeed a core roof Australia is much more effective than street tree or reflect your payment. So spatially, this is what this looks lik, right? If you don’t do any change to the urban landscape at the end of the century you will still have a lot of urban heat Island.

This is circle, warm color circles indicate Urban heat island. We have a few cities that actually have cool like Island indicated by the cold color,
but they never that’s on average,
you’ve got quite strong urban heat Island
but if you use EPA white roof everywhere in this cities,
you actually now have a cold Island almost
across the whole country.
This is of course in a Daytime situation
but the white roof does not work as well
for nighttime obviously, right?
White roof works because it reflects sunlight in the daytime
but at nighttime there’s no sunlight took to stick off
so you don’t get much of a benefit at nighttime.
So that still would be still is an important
hurdle to overcome how do you call a nighttime temperature?
The white roof would not be an effective approach for that.
So that the calculation is done really theoretical right,
in the theoretical calculation and we don’t really get a sense
of the kind of change we are calling for,
the change Urban land form is really substantial.
If you really want to follow this strategy
I’ll be implementing white roof everywhere.
So for that
we decided to well the triplets,
do some visualization.
This visualization is based on
a data source
sort of drawn data collected by this company
over a neighborhood in a city in,
I think in Switzerland
and so we then use this to it to some animation.

Let me see if can turn the animation over here.

It does not, let me see way by control here.

(indistinct) Okay there it’s go

So this is the current landscape, right?

We’re doing a fly by as if we were a bird looking at the landscape from different angles.

It’s a very pleasant landscape, you know, have a dark roof green lawn and street trees

and then we say, okay well, we’d like to change this landscape because we are very concerned about urban heat Island.

we can artificially digitally alter the roof material to a white shiny high albedo material and then we’d do a fly by, right?

So that, this is kind of landscape we are, we’ll be looking at

we are not very used to, a lot of people criticize us for saying that because they said, this is not a pleasant landscape to a city to be in

and pass maybe you wouldn’t be detrimental to pilots because they can’t see the ground well

and maybe they will get blinded by the Brighton yourself
But anyway, so that’s obviously a big change we need, so let me switch gear a little bit to what we are doing now. And so I won’t pick a criticism of the work we have been doing is that we are using surface temperature as a measure of heat stress, because to measure heat stress, you need to use air temperature and furthermore heat stress is not only caused by temperature, it’s also caused by high humidity.

So strictly you should, we should be using some kind of combined index. In meteorology, this is how we measure Wet-bulb temperature, right? We cover the thermometer with some kind of Wet cloth allowing the surface of the thermometer to be wet all the time, and so, allow the evaporation to occur at the surface.
and so the temperature you imagine that this situation is Wet-bulb temperature and so that’s a thermodynamic parameter that meteorologists use a lot to characterize the thermal environment. It turns out though in a hot environment sweating is obviously is a way, it’s the only way actually for us to maintain low skin temperature, a person who is sweating a lot can be considered essentially a big wet bulb cause we assume the body is exposed, no clothing and the whole body is covered with sweat so analogous to a wet bulb. So then you can use wet bulb temperature to see the effect of heat stress on human body and as I said earlier just to survive hard environment we need to maintain a two degree difference between skin and a deep body temperature so that our body can dissipate heat to the environment right? But then it turns out if the We-bulb temperature of the environment goes beyond 35 degrees, this is no longer possible, we wouldn’t be able to be able to maintain a two degree difference. Our skin temperature would be higher than 35 degrees and if we don’t have air conditioning. So without air conditioning we cannot survive
when external environmental temperature or Wet-bulb temperature goes beyond 35 degrees. That’s really the physiological barrier the limit that you know, determines the survivability or habitability of the law of the environment. So we are knowledge high trying to come up with a strategy of studying using a wet bulb instead of the surface temperature to quantity that’s undergoing a new project, it’s a collaborative project happening here at Yale, it’s called Biking for Science and Health and so the idea is that we can use bicycles to help out map out temperature and humidity across urban and rural landscape and use that as a way of collecting data to validate a model calculation of course the project oe the objective of this project is much broader than only measuring temperature. So the broad objective is to integrate smart sensor technology with public bicycles or maybe private bicycles as well for urban environmental monitoring so T-Mobile for scientists including professor Dubrow as part of the team and so this is that the idea right? So we, what we want to do is to convert bicycles into measurement platform either volunteer cyclist bicycles,
planning to volunteer cyclist or public bicycles.

So and then, the smart sensor would sense the environmental conditions temperature humidity and in the future, we also want to measure air pollutants and so the sense of what, then you turn a cyclist smartphone into some kind of geolocation and data collection device and that data can then try and get transmitted to some kind of a server to allow the data will be automatically transmitted to a data server, and then the data server would then dispatch data to different users in the case of public bicycles, the data will be automatically transmitted to a data server, and then the data server would then dispatch data to different users.

So we are having some success in terms of designing a sensor, a smart sensor for temperature humidity. This is a patch of smart temperature humidity sensors, very small and this is a picture of all this smart sensors and this is to give you a scale of the sensor, a cache to the bicycle handlebar.
and so I'll show you that the idea we have is to recruit volunteer cyclists and eventually we can also implement sensors on public bicycles but in case of volunteer cyclists we are hoping, we are defining sort of kind of data interface. This is work by TC and Yichen interface to so that when the data is sent to some kind of data center, the cyclist would receive a link. The link then allows the cyclist to view the bicycle route as well as the conditions, temperature condition and humidity and maybe in the future also air quality parameters and along the route by spiked. we are still having trouble with the color scale yet. And so you can actually look at data, put the data this kind of spaghetti plot under different map background. This is just pure simple map background. You can put it in a, you know, satellite background map background or you can put down in street map background. So this is not place still very much a work in progress. So I was up here and see if we have questions. I like leave some time to engage. I was discussion and questions. Thank you very much.
Thank you, (indistinct) for the wonderful presentation.

We do have a lot of questions from the students. But if people, if you have your own questions please type your question in the chat box while Dr. Lee was answering to the students’ questions. So the first question actually don’t be you showed a very very interesting with us about them, why the core roofs and I had receive a lot of question from the students asking about the comparison between a white roof versus a green roof. They were particular interesting in whether, what do you think about like the disadvantage of the white roof compared to the green roof? So my White roof is not very pleasant, right? You don’t like that in your neighborhood and I showed you with that, a drone sort of animation the landscape’s not that pleasant to look at but in terms of cooling this surface climate, white roof is much much more effective than green roof. I’ll tell you why, in green roof, you have to, first of all, it’s very difficult to plant trees on a roof right? So trees tend to sustain evaporation much more than grass than shrubs and so, but if you just planted shrubs and grass on rooftop, you have to constantly irrigate them in order to get cooling benefit.
0:45:59.857 –> 0:46:02.23 and then your irrigation is not easy
0:46:02.23 –> 0:46:04.3 especially if you have a tall buildings
0:46:04.3 –> 0:46:05.9 and think about pumping water
0:46:05.9 –> 0:46:08.35 up to the rooftop and irrigate right?
0:46:08.35 –> 0:46:13.103 So that’s itself is a very energy intensive endeavor.
0:46:14.4 –> 0:46:19.4 So absence of the radiation green roof really won’t do much
0:46:21.061 –> 0:46:23.314 to the local temperature
0:46:23.314 –> 0:46:25.94 but I should have knowledge of obviously green roof
0:46:25.94 –> 0:46:27.58 is much more pleasant right?
0:46:27.58 –> 0:46:30.02 It’s maybe has other benefits
0:46:30.88 –> 0:46:33.37 beyond just cooling the local landscape.
0:46:33.37 –> 0:46:37.52 So that’s a debate obviously that’s people should,
0:46:37.52 –> 0:46:40.882 that aspect should be considered
0:46:40.882 –> 0:46:44.25 when you look at a white roof versus a green roof.
0:46:44.25 –> 0:46:48.64 So if you look at the cooling power street vegetation
0:46:48.64 –> 0:46:49.49 is more effective
0:46:50.68 –> 0:46:52.09 than green roof.
0:46:52.09 –> 0:46:53.5 So you’ve put green roof here,
0:46:53.5 –> 0:46:57.793 the effect is really tiny compared to a quarrel for white.
0:47:00.8 –> 0:47:03.08 - Thanks, I think we will get more questions
0:47:03.08 –> 0:47:04.46 on these from the audience,
0:47:04.46 –> 0:47:08.95 but I will move on to the other question from the students.
0:47:08.95 –> 0:47:12.77 The other questions students are wondering is like
0:47:12.77 –> 0:47:17.33 you introduce us about the concept of urban heat Island
0:47:17.33 –> 0:47:21.72 and students are wondering like a lot of the mitigations
0:47:21.72 –> 0:47:26.27 we take for the urban area that’s that has also impact
0:47:26.27 –> 0:47:29.04 for the adjacent rural areas.
0:47:29.04 –> 0:47:32.09 Like if we do all these,
0:47:32.09 –> 0:47:32.923 why move
0:47:34.2 –> 0:47:35.74 in urban area,
0:47:35.74 –> 0:47:38.23 does it also like
0:47:38.23 –> 0:47:40.31 simultaneously reduce
0:47:41.31 –> 0:47:43.683 the heat exposure in the rural area?
0:47:44.66 –> 0:47:46.12 - Yeah, that’s a very good question.
0:47:46.12 –> 0:47:49.69 I think, so that really the question maybe can be
brought
0:47:49.69 –> 0:47:53.74 in a little bit to say that’s changing urban forms
0:47:55 –> 0:47:57.07 whatever way does the have effect
0:47:57.07 –> 0:47:59.72 on regional climate or even global climate?
0:47:59.72 –> 0:48:00.56 Right?
0:48:00.56 –> 0:48:02.42 The answer is probably no,
0:48:02.42 –> 0:48:06.67 because we are we are talking about change,
0:48:06.67 –> 0:48:08.22 intensive changes that’s
0:48:08.22 –> 0:48:11.127 but the intensive change,
0:48:11.127 –> 0:48:16.127 is only occurs in a very tiny fraction of the landscape.
0:48:16.57 –> 0:48:20.55 Urban land is what 2% of the whole terrestrial land
surface
0:48:20.55 –> 0:48:25.036 and so, and in that we have intensive modification
0:48:25.036 –> 0:48:27.64 that intensive modification will manifest itself
0:48:28.899 –> 0:48:32.88 in localized response but outside of urban area
0:48:32.88 –> 0:48:36.123 that the benefit is really really not that bad.
0:48:38.07 –> 0:48:39.863 So the answer is probably, no,
0:48:41.57 –> 0:48:45.5 unless we are dealing with like a huge metropolitan
region
0:48:45.5 –> 0:48:50 maybe in India, where you have clusters of cities,
0:48:50 –> 0:48:52.18 a lot of cities cluster together
0:48:52.18 –> 0:48:54.74 maybe then there, you might have some effect
0:48:54.74 –> 0:48:56.333 on background temperature.
0:48:58.77 –> 0:49:00.83 - Thanks, I think, yeah.
0:49:00.83 –> 0:49:03.2 I think if we got a follow up customer
0:49:03.2 –> 0:49:05.11 regarding the green roofs
0:49:05.11 –> 0:49:07.483 so they were asking one of your paper,
0:49:08.756 –> 0:49:10.523 The Jaw and The Shoes article,
0:49:12.16 –> 0:49:14.79 in that paper, there’s mixed implementation
0:49:16.103 –> 0:49:17.8 of the white and green roofs
0:49:17.8 –> 0:49:20.28 and the given the green roofs lead
0:49:20.28 –> 0:49:22.35 to increase the evaporation
0:49:22.35 –> 0:49:25.72 and likely increase humidity with wide roofs
0:49:25.72 –> 0:49:28.51 and green roofs have under
0:49:30.106 –> 0:49:31.32 donor’s state effects
0:49:31.32 –> 0:49:35.97 due to green roofs contributing to the Web-bulb tem-
0:49:35.97 –> 0:49:38.9 - Yeah, yeah, that’s an excellent point
0:49:38.9 –> 0:49:43.03 and so if you take that humidity into consideration
0:49:43.03 –> 0:49:44.43 you probably don’t actually,
0:49:45.934 –> 0:49:50.05 you want to avoid a green roof
0:49:50.05 –> 0:49:50.97 because green roof
0:49:52.59 –> 0:49:55.47 on one hand you will reduce the air temperature.
0:49:55.47 –> 0:49:59.78 but on the other hand, it will increase humidity, right?
0:49:59.78 –> 0:50:03.29 So the reduction air temperature could be totally erased
0:50:03.29 –> 0:50:06.07 or the effect of temperature reduction could totally
raise
0:50:06.07 –> 0:50:08.91 by enhanced humidity factors.
0:50:08.91 –> 0:50:12.43 And so, and of course in this analysis,
0:50:12.43 –> 0:50:14.71 the solid dollar analysis
0:50:14.71 –> 0:50:18.07 we have not brought in the concept of wet bulb,
0:50:18.07 –> 0:50:20.15 but if we bring wet bulb into consideration
0:50:20.15 –> 0:50:23.133 that may be an argument we should consider seriously.
0:50:24.896 –> 0:50:27.18 - Yeah, I’ll also from the audience
0:50:27.18 –> 0:50:30.823 a question regarding the implementing of the
0:50:32.119 –> 0:50:34.45 core roof policy,
0:50:34.45 –> 0:50:38.14 have you considered whether you paint all the roofs
white

33
or use how they are scattered
painting within the city?
So do you consider the difference of the painting
depend all the buildings, all you does a scattered be-
cause.
So in this calculation, we except hypothetical calcu-
lation
we just combine all the routes to a high Albedo mate-
rial,
in actual implementation I think you cannot do that
because there’s no point actually doing
a one size fits all situation
because if you have North facing roofs right,
then the deflections doesn’t doesn’t matter as much
I saw spacing roof.
So maybe you need to differentiate North facing
versus South facing roofs.
In the city of Chicago,
they actually have grades,
if you have very steep roof, they ask you,
they recommend certain kind of Albedo values
when you have less steep roofs,
they recommend other kind Albedo
so he said,
it’s mixed of strategy.
By now all lot of cities actually
aggressively promoting spokes,
those kinds of reflect humid roof materials.
- Thanks, I guess the audience
and the students are very interested in this topic
though.
They have accurately both the students
and audience ask a question regarding have you ever considered all these heat Island mitigation matters? They may have some side effects on the air quality so how you kissing that in your own modeling? - Yeah, there's a... So people say maybe for white roof material implementation it’s best to it in clean cities where there's no, air quality is not a big concern in proagic cities When you put in a white roof, you can change the way that the structure of the boundary layer essentially what happens is if you have a white roof you are not heating the low atmosphere as much. You’re reflecting a lot of sunlight away without us to the upper atmosphere and to the outer space, right? So what happens then is you end up with a shallow a boundary layer but there's less mixing power, less mixing volumes, so you end up with higher air pollution concentration. So that’s the, it could be a serious societal effect especially imploded seedlings. So that’s another, this the harm you could say perhaps caused by air quality. That’s a very good point. Thanks, another aspect of the students are wondering is like you showed a little bit about
the different like riddles from the satellite, from the modeling and the students are particularly interesting in wanting these kind of modeling. So how can you actually simulate the interactions with the global warming and also all the biophysical drivers of the urban heat Island in the continent models? Okay, so in the climate models right, a lot of models don’t actually have what we call a city landscape that so, what we call subgrid parameterization, so within each Greek cell you have different parches for that type of land so some great cells were contained urban land tile, urban tile and some would have no, if there’s no urban. So this model actually can calculate within which is great cell, temperature, humidity, and so on within for each tile. So typically when you download a data though, the data is aggregate to the Greek cell that was so you don’t see subgrade kind of a pattern. You don’t see a subgrade pattern but we are able to re redo the calculation and retrieve data within each Greek Model grade data for vegetations tile and offer urban tile. So that essentially set up the problem
for us to have to do then compare those subgrade tile data to get the urban heat Island apart from the climate models. That’s how a client model handles landscape heterogeneity within a model grid cell. Thanks, I think due to the time limitation, final question is the students and audience are very interested that in like, what’s your recommendations for our daily life in as an individual, is it more eco-friendly to have solar panels or have a quarter of a solar. Solar panels are very interesting, right? You need to do a very sort of a careful calculation, to look at the benefits. So solar panel dependent if it’s true false for why is that you, like I said you convert a local solar radiation to electricity and in doing so, you don’t heat the environment, you don’t allow radiation to heat the environment but the commercial efficiency is not very high. It’s not as high as reflection by core roof. So on its own, you would say the cooling benefit of solar panel is not as high as core roof, but then you have an added benefit of electricity generated by solar energy right? So you offset the demand for fossil fuel energy.
0:56:30.48 –> 0:56:32.3 So that benefits more broad
0:56:32.3 –> 0:56:35.52 modular views is you’re offsetting energy demand
0:56:35.52 –> 0:56:37.21 for fossil fuel
0:56:37.21 –> 0:56:40.66 and therefore you cool the whole club global climate.
0:56:40.66 –> 0:56:43.783 So there’s that, there’s a benefit to that
0:56:43.783 –> 0:56:47.02 so that you need to consider both sides
0:56:47.02 –> 0:56:49.6 local Coolig versus global cooling
0:56:49.6 –> 0:56:51.94 versus and offsetting energy
0:56:53.202 –> 0:56:56.07 and so that’d be a hard subject
0:56:56.07 –> 0:56:57.653 that need to be debated, right?
0:56:58.6 –> 0:56:59.595 But I think if you are,
0:56:59.595 –> 0:57:03.15 if you want to conserve your electricity bill,
0:57:03.15 –> 0:57:05.77 if you want to reduce your electricity bill in your house
0:57:05.77 –> 0:57:06.603 that you’re,
0:57:06.603 –> 0:57:10.871 the best approach is actually having a core roof.
0:57:10.871 –> 0:57:13.37 If you have at a core roof on your rooftop,
0:57:13.37 –> 0:57:18.01 then the demand for AC will be substantially reduced.
0:57:18.01 –> 0:57:22.65 You will have a lot of electricity saving in that way.
0:57:22.65 –> 0:57:25.5 That’s has to be demonstrated by a lot of people actually
0:57:26.42 –> 0:57:27.61 - One fourth session.
0:57:27.61 –> 0:57:30.61 Thank you for all the insightful discussion
0:57:30.61 –> 0:57:32.83 and also the presentation
0:57:32.83 –> 0:57:36.59 and with that, I think we thanked Dr. Lee
0:57:36.59 –> 0:57:38.76 for this wonderful presentation
0:57:38.76 –> 0:57:42.513 and I thank you all for coming for our seminar.
0:57:43.54 –> 0:57:45.223 - Bye - See you guys.