Hello everybody welcome,
we’re gonna give it just a second for everyone to get set up
and then we will get started here today.
Right, it looks like most are connected to the audio,
so I welcome you all thank you for joining us,
my name is Becca Melnick.
I’m the associate director of admissions,
and the Yale School of Public Health.
I recognize many names, I’ve seen you all
on events earlier this week,
and I’ve conversed with a lot of you throughout the process
so, thank you for joining us today,
this session for our Executive MPH Virtual Open House,
which is focused on the Environmental Health Sciences Track,
as hopefully many of you have seen,
we’ve had other events throughout this week,
a general program overview,
sessions for other tracks specifically,
and we’ll be having other events for financial aid careers,
and the intensives leader in the week.
So with that, I will turn it over to Yong Zhou,
who’s the track coordinator,
to talk a little bit more about our EHS Track.
And we’ll just say that,
we want this to be interactive and helpful for you,
so please feel free to ask questions that you have as we go.
Thank you, Becca and everyone joining us today,
So this is a brief overview about Environmental Health Sciences Track. That's the first page. So just a little bit about myself, My name, Yong Zhou, I've PhD in Molecular Biology, currently I'm Associate Professor of Epidemiology, in the Department of Environmental Health Sciences, So my research area is in the field of molecular cancer epidemiology. Basically dealing with biomarker, or social weights, environmental exposures and the disease progression disease, CLPD outage, so from molecular perspective, this is my research area. And research disease focused on cancer, so this is my email, and cellular phone number, we have another slide, talking about my my role in this program, this is my contacting for so you want me to fail sciences that become one of the dominant themes of the 21st century because of the growing global population and our limited resources and the strain ecosystem monetary challenges require aware train workforce and possessed the scientific skills. And then I think the tours to come from the emerging stress. So we need to learn something, but again that's the purpose of the cost we design to fit the requirement off of these challenges
because through important the national Institute of environmental health sciences, and yet as one of the major NIH and also world health organization WHO have launched collaborating center to investigate many environmental health science, concerns, for example on our children’s environmental health science that could be impacted by environmental exposures and the Columbia changes and the human health and the indoor air pollutions including other productions from the water or the pollution is also so that’s the important off the mountain fail sciences, probably.

That’s the one for the reason you, you take the front of the house to check, but this is the three calls us.

We put together. It’s very unique accurately for 12 calls.

So we combine to our professors their expertise to enhance the content their health of these calls us, we them with the first one we first caused you to support your assessment.

So we all exposed to different chemical, biological, physiological, environmental agents doing our daily life. But these calls were provided tours to assess environmental stressor in conquer the indoor or outdoor and occupational environment.

And there’s review masters for evaluating the quantitative.
0:04:35.58 –> 0:04:38.906 of the exposure data for you.
0:04:38.906 –> 0:04:42.472 Then pull the air pollution, the water contamination.
0:04:42.472 –> 0:04:45.14 So what’s the best way to assess them
0:04:45.14 –> 0:04:48.972 and how to collect the quality data for research purpose.
0:04:48.972 –> 0:04:51.53 I think these are the first the costs
0:04:52.47 –> 0:04:55.54 that’s given the concept is that a lot
0:04:55.54 –> 0:04:59.852 of diseases associated with you can support you
0:04:59.852 –> 0:05:02.004 but this is the pure epidemiological approach.
0:05:02.004 –> 0:05:04.6 We’ve tried to find association
0:05:04.6 –> 0:05:06.952 between exposure and the disease or other Phil’s outcomes
0:05:06.952 –> 0:05:10.29 making a connection
0:05:10.29 –> 0:05:14.76 by the water tours available for exposure assessment
0:05:14.76 –> 0:05:17.06 but still then we can say the how to apply the
0:05:18.687 –> 0:05:21.04 latest epidemiological and toxicological research
0:05:21.04 –> 0:05:22.84 to their own work and the project.
0:05:22.84 –> 0:05:26.55 So after this course, that’s the initial part.
0:05:26.55 –> 0:05:31.06 So we have two professors teaching.
0:05:31.06 –> 0:05:33.96 These costs, professor Nico diesel.
0:05:33.96 –> 0:05:37.28 She is a pro, especially the professor I would department.
0:05:37.28 –> 0:05:39.92 So her expertise is in the field
0:05:39.92 –> 0:05:42.76 of risk assessment and the methodology methodology.
0:05:42.76 –> 0:05:47.307 And also we have professor crystal plate.
0:05:47.307 –> 0:05:52.307 Her expertise is in the chemical and environmental engineer
0:05:53.42 –> 0:05:58.15 and she developed aware wearable Ben Reese
0:05:58.15 –> 0:06:02.69 the ban to collect the environmental exposures
0:06:02.69 –> 0:06:03.97 then analyze this.
0:06:03.97 –> 0:06:06.18 I mean the deaf people could carry this again
0:06:06.18 –> 0:06:07.9 individualize the exposure data.
So they provide both of them were providing expertise for the methodology and the four data connecting real data to environmental exposures.

That’s the first, first cost we put together. But if we consider the association between exposure and the disease so what’s in the middle, that’s the black box. So the second the cost will help us to break this black box to see what specific hazard or exposure agents in this black box that could help us explain the observed association between exposure and entities. So I learned the foundation for understanding our role of toxic cottage in public health protection was a focus on 21st century techniques and the challenges that the new technology students learn for hazard identification, but simply why be introduced to basic principles of toxicology. If we can have a dose response mechanisms of toxicity and the standard of defense instead of a response but these all in this black box between exposure and the human diseases and then they move on to advanced topics then how we use these tours for study early life or one a bit at a low level exposure to mixtures and the system biology approaches and the green chemistry solutions and the problem presented by chemicals that are common.
0:07:49.16 –> 0:07:52.223 in consumer products and the building environment.
0:07:53.96 –> 0:07:56.82 So Wells together to offer our professors
0:07:56.82 –> 0:08:00.485 the teachers cost professional part.
0:08:00.485 –> 0:08:01.573 And that's another thing.
0:08:04.14 –> 0:08:06.838 Yes, Hey, here's the final off green chemistry
0:08:06.838 –> 0:08:08.65 but probably you all know what’s green chemistry.
0:08:08.65 –> 0:08:11.892 Lastly, we build our product to use in one little friend
0:08:11.892 –> 0:08:13.823 that chemical, then you run with a friend today.
0:08:13.823 –> 0:08:17.36 Then now it’s just with our environment.
0:08:17.36 –> 0:08:18.842 We also have our profile.
0:08:18.842 –> 0:08:23.842 I will department here, professor I met his name was Ella.
0:08:28.87 –> 0:08:31.03 He’s the senior toxicologist.
0:08:31.03 –> 0:08:33.541 I mean with expertise in this field
0:08:33.541 –> 0:08:35.27 the leading toxicologist in the field.
0:08:35.27 –> 0:08:40.11 So both of them will provide the fundamental principles
0:08:41.41 –> 0:08:43.94 of the different tours that students can use.
0:08:43.94 –> 0:08:48.215 People can use for hazard identification, but these
0:08:48.215 –> 0:08:50.903 the second and cost be able to
0:08:50.903 –> 0:08:53.761 upon the first one of the exposure and the disease Carnation
0:08:53.761 –> 0:08:58.761 and the water towards can use to identify specific hazard
0:08:58.79 –> 0:09:00.673 between exposure and the disease.
0:09:06.94 –> 0:09:10.071 So the third cost we put together that risk assessment
0:09:10.071 –> 0:09:14.52 and the policy, these calls were introduced the
0:09:14.52 –> 0:09:16.81 methodology interpretation application
0:09:16.81 –> 0:09:19.07 on the communication surrounding the use
0:09:21.51 –> 0:09:23.56 So students were gaining an understanding
0:09:23.56 –> 0:09:25.3 of how toxicology information
0:09:25.3 –> 0:09:28.23 on hotter than a dose response is incorporated.
We exposing information to predict the house risk for why the variety of populations and also students the bathroom visit assessment for real world exposure issues. So after we know about specific exposures and the know about some detailed chemical a hazard or Asian that could then could expose you and the human population and the disease outcome. So the next job we should do is that what’s the policy we should put together for policy decision making, but again, risk management also the policy maker to make decisions. So this work gave us some idea about what information we should have put together to present to the policy maker and the involved with the English risk of management and the policy and public health policy. So we have professor Gary Ginsburg. So he’s also the director of the center for environment health in New York state department of health, who he has tons of experience with policy environmental policy, and also how to interpret the data collected the farm research from different research. But most of the time we have to conduct a multiple research project to confirm exposure and the disease relationship, the what information they are important for the fullest policy makers. So these are these sweet calls us give a different
0:11:07.23 –> 0:11:09.79 perspective of how we approach environmental related
0:11:09.79 –> 0:11:11.24 to the issue.
0:11:13.819 –> 0:11:15.469 Okay I think firstly, these days.
0:11:22.8 –> 0:11:26.52 Okay in addition to these three courses
0:11:26.52 –> 0:11:31.52 but students can also get access to all our faculty members.
0:11:31.613 –> 0:11:35.17 I know that they also go to site visit.
0:11:35.17 –> 0:11:37.693 You can have in-person meeting.
0:11:37.693 –> 0:11:41.673 We saw were a faculty member, but you can always check
0:11:41.673 –> 0:11:46.673 out our website to identify the faculty with research issues
0:11:48.4 –> 0:11:51.76 or with resource areas that fit your interests, you fit.
0:11:51.76 –> 0:11:55.03 We are, you’re very welcome to contact them.
0:11:55.03 –> 0:11:57.47 The research expertise of our EHS faculty.
0:11:57.47 –> 0:11:59.657 It covers a number of few if we can, some off of them.
0:11:59.657 –> 0:12:01.603 And we are then at the end
0:12:01.603 –> 0:12:05.676 we already talked about that’s the resource area
0:12:05.676 –> 0:12:07.754 of the course instructor framework.
0:12:07.754 –> 0:12:09.53 But in addition to those
0:12:09.53 –> 0:12:12.28 we have climate and energy impact on sales
0:12:13.487 –> 0:12:18.056 where people working on climate change and human health.
0:12:18.056 –> 0:12:19.94 We also have faculty member
0:12:19.94 –> 0:12:23.08 we expertise in developmental orange of human diseases.
0:12:23.08 –> 0:12:25.313 So for early life exposures are so important
0:12:25.313 –> 0:12:29.342 that as a risk predictor for later life diseases
0:12:29.342 –> 0:12:34.342 and the green chemistry, we already talk about understanding
0:12:35.3 –> 0:12:37.817 and overcoming environmental health disparities.
0:12:37.817 –> 0:12:42.817 We have also people work on novel approaches
to assessing environmental exposures and early biomarker effect of the systematic system biology approaches. That’s why they use among seven welfare. So we’re all following faculty groups. And also we use this tours to apply these tours in the major human diseases including cancer, heart disease and also these days than the Corona virus COVID-19. Okay, so during the pandemic, we have a lot of experience with online teaching, but also online research but you’re well, very welcome to contact our faculty member to see whether you want to participate in their or know more about the research, a specific topic or get involved in their research. Probably we can, we can develop something for you too. This would be working with it, gained some experience involved in a real research setting. So as a track quality, neither. So my thought is to help support attract development and review, get feedback. Pharma student investigator, Rob, as a bridge between a student and teaching faculty and we’ve cost evaluation, supporting instructors to improve with their counselors or the cover something you really need. in also, I can provide a student academic and career mentoring for them. If you want to know more about the specific research
topic can help you to connect to a wildfire faculty member.

And it’s upon identification of capstone project before the research all fails Easters or for any project you are interested, I think we can help to make the connections.

So that very brief being sure that I’m sharing about you mom know how science says about the three courses we’ll put together About other results.

Tonight is also our whole department is open to all for you and about my role as the coordinator. Thank you.

And any questions about the courses, the track, the kind of combination of courses with other tracks, anything that’ll be helpful. And thank you, Reynolds are freezing the chat feel free to use the chat or raise hand or just to kind of turn your camera or your mic on. This, off the slides so we could see each other.

So the question is are there tours provided to labs where work is performed? Not, I mean, from an emissions perspective, not really.

We have a campus tour that will be posted online within the next probably two weeks.
That does show a little bit of the inside of some of our labs, but there are hundreds of faculty research projects and labs on campus. It’s hard to kind of capture them all in one sort of tour. And unfortunately at this point, campus is not open to external visitors, so we can’t have kind of live tours but I don’t know if there’s kind of another anything else you can think of that would be helpful for kind of tours of labs where work is performed. Well, I know this, our professor Paul, another test is here. I think Paul, do you have anything to add? Or a pleasing? Some of my apologies I had a little trouble linking onto the zoom link. My, but I, I just wanted to say one thing specifically about the, the tours that as, as we transition to increasingly opening up our, our labs, I’d be more than happy to engage people and, and coming through our labs and, and trying to even do it virtually if you wish to contact me directly or through or through yarn or, or, or admissions. So I’m always happy to do whatever we can to give you a glimpse into the, the real world, real world of, of our laboratories. There’s something that I just wanted to add. If I, if I may professor Zhou, I just wanted to say I thought that the description of the program was, was really wonderful.
And the only thing I'd add was that the way that this program was thought through was to identify the essence of what a student would want to know. We needed to know the essentials of exposure, hazard risk, those things that are yeah, the distillation of those key principles, those key fundamentals so that they can be applied. And then as we said, opening up those other opportunities to interact with the wide range of faculties and resources at Yale. So that’s what it is. It’s the essence of what you would want to know on this topic.

Okay. Thank you for that kind of information. I’m glad you could join us as well so that students can meet as many faculty members and program team members as possible. Are there any other questions at this point?

Thank you so much for this wonderful presentation. I have a question about the first course in the track. I think there’ll be some overlap
0:19:46.47 –> 0:19:49.48 some better concept of stay the same, right?
0:19:49.48 –> 0:19:52.17 I mean, I think epi designed a pre-approach
0:19:52.17 –> 0:19:55.37 EPU protocols where the similar
0:19:55.37 –> 0:19:59.11 but the work to focused on your mental perspective.
0:19:59.11 –> 0:20:02.37 So how we use these tours for this assessment
0:20:02.37 –> 0:20:05.223 is going to be lying different epi design.
0:20:06.269 –> 0:20:09.19 I think that they do the overlap, but again
0:20:09.19 –> 0:20:11.04 the focus will be a little different.
0:20:15.057 –> 0:20:17.153 - Thank you so much.
0:20:33.727 –> 0:20:34.828 - Do you have any, I can.
0:20:34.828 –> 0:20:36.111 So there’s another question to chat, Dr.
0:20:36.111 –> 0:20:39.263 can you speak more about your work on green chem-
0:21:02.64 it basically takes this concept of the substances that
0:21:05.84 up our society and our economy, everything that we see
touch
0:21:05.84 –> 0:21:07.95 and feel pretty much as a chemical.
0:21:07.95 –> 0:21:12.95 So when we think about, Oh, a chemical is something special
0:21:13.681 –> 0:21:15.811 or specific and produced by the chemical industry.
0:21:15.811 –> 0:21:20.07 Now we’re surrounded by chemicals and we know
0:21:20.07 –> 0:21:22.93 that chemicals have given us a tremendous amount
0:21:22.93 –> 0:21:25.78 of function, but we also know
0:21:25.78 –> 0:21:28.14 that they’ve brought about a tremendous amount
0:21:29.845 –> 0:21:32.04 of hazard and risk and a negative consequences.
And so what green chemistry is all about is how do you maintain all of the function, all of the performance, all of the near technological miracles that chemicals and chemistry has given us while eliminating those adverse consequences. So carcinogens and neurotoxins, endocrine disruption, environmental pollutants. And so it’s all about the design of the next generation products and processes.

And so we have a center for green chemistry and green engineering here touches on a wide range of different applications of green chemistry and everything from energy to consumer products, cosmetics, building materials, and architecture, and on and on. So as I, as you can tell, I could go on for a, well, at least a whole semester about this, if, if you’d let me, but I probably ought to stop there.

Any other questions? You know, as much as I said, I was going to stop. I’m going to add one or two more sentences. So I get to co-teach the, the course on hazard. And we think about hazard perhaps too often as just the way things are. It’s just the nature of things, but we dive into hazard not just understanding that things are hazardous but why they are hazardous the underlying physical chemical properties of what makes us substance hazardous what makes it allowed to get into our body.
It would be in the adjusted cross membranes caused those kinds of problems. And we want to get that deep level understanding so we can design new things to be different. So that’s why understanding hazard is so rather than just simply protecting ourselves with masks and respirators and personal protective gear and, and saying always use in a well area. Instead, we can design things so that they are intrinsically less hazardous. And so that’s, that’s the perspective that we bring to that course and throughout the program. I think that your work is a great example of really the interdisciplinary perspectives you get across the program here. I think, you know, that the EHS track and your work in green chemistry really highlights how the different schools and programs at Yale crossover a lot. And you’re able to kind of bring in expertise from different areas across university and how that isn’t, you know, really, I guess, evident in our on-campus program, but still a great opportunity within the executive MPH online, that you’re still able as a student in the program to engage with experts and scholars in these really, you know interdisciplinary areas of public health work. So we’re glad that you are a part of the track and really highlighting that
0:24:52.748 –> 0:24:55.79 that true benefit of our MPH and the executive program.

0:24:55.79 –> 0:24:57.83 - Yeah, go ahead.

0:24:57.83 –> 0:24:58.985 Go ahead.

0:24:58.985 –> 0:25:01.706 - I was just going to say, thanks for bringing that up

0:25:01.706 –> 0:25:03.32 because that interdisciplinarity is key

0:25:03.32 –> 0:25:06.521 because the way that the school

0:25:06.521 –> 0:25:09.65 of public health, you know, coordinates, collaborates

0:25:09.65 –> 0:25:12.9 and builds with whether it be the school of engineering

0:25:12.9 –> 0:25:15.1 the school of architecture, the school of environment

0:25:15.1 –> 0:25:18.22 especially there’s so many interconnections

0:25:18.22 –> 0:25:20.01 in order to bring about all

0:25:20.01 –> 0:25:22.93 of those positive consequences for public health.

0:25:22.93 –> 0:25:26.943 And that’s what this, this program really emphasizes.

0:25:28.587 –> 0:25:33.587 - Yeah. Just add to Paul’s point that the, the hardest

0:25:33.85 –> 0:25:37.469 identification involve some basic mechanistic studies

0:25:37.469 –> 0:25:40.61 but you can look at it, exposure assessment.

0:25:40.61 –> 0:25:42.74 They only give us association

0:25:42.74 –> 0:25:46.04 but we do not know whether these are causal association

0:25:47.173 –> 0:25:51.87 or just association with all the causal effect.

0:25:51.87 –> 0:25:54.1 So the sec that’s a, but again

0:25:55.155 –> 0:25:56.673 we shouldn’t need a good technology.

0:25:58.084 –> 0:25:58.917 You mean high quality data to conclude those

0:25:58.917 –> 0:26:01.75 but the second the cost, how do the identification

0:26:01.75 –> 0:26:04.1 like the doctor and ask the surgeons that we

0:26:04.1 –> 0:26:06.591 some biological mechanistic study

0:26:06.591 –> 0:26:11.591 we can pinpoint what chemicals to Pacific chemical evolved

0:26:11.85 –> 0:26:14.092 in these exposure disease association

0:26:14.092 –> 0:26:16.06 then concreter some call.

0:26:16.06 –> 0:26:19.71 So you fact, now we can bring this information
0:26:19.71 –> 0:26:23.135 to policy maker, for example
0:26:23.135 –> 0:26:24.997 one good example, the freedom there
0:26:25.948 –> 0:26:28.646 some contamination in the water, a certain area.
0:26:28.646 –> 0:26:29.72 Then we find some seeing this.
0:26:29.72 –> 0:26:34.37 Then just some policy maker can ask all the people
0:26:34.37 –> 0:26:35.56 leaving that area.
0:26:35.56 –> 0:26:38.374 They have to get some filter to clean up their water.
0:26:38.374 –> 0:26:41.851 So I think that’s the sway different perspective
0:26:41.851 –> 0:26:45.288 put together can help us better address
0:26:45.288 –> 0:26:48.5 any environmental related issues with all this.
0:26:48.5 –> 0:26:49.75 So this hallway we design
0:26:51.917 –> 0:26:53.24 I think the reason I put these three cultures together
0:26:56.597 –> 0:26:57.865 - That’s a great way to, to put it in.
0:26:57.865 –> 0:27:01.764 I would just add to that, that the philosophy of the
0:27:01.764 –> 0:27:05.24 of the program of the school
0:27:05.24 –> 0:27:08.48 of all of the professors that you’ll interact
0:27:08.48 –> 0:27:11.72 with is that yes, we seek to
0:27:11.72 –> 0:27:15.228 to deeply understand these problems deeply, rigorously
0:27:15.228 –> 0:27:17.324 scientiffically understand these problems, but
0:27:17.324 –> 0:27:21.542 the only reason to deeply understand a problem is to inform
0:27:24.95 –> 0:27:28.18 And so how we take that deep level understanding
0:27:28.18 –> 0:27:31.57 and that’s what we’re teaching you is the essence
0:27:31.57 –> 0:27:32.68 of how to understand those problems
0:27:32.68 –> 0:27:36.26 in order to inform and empower public health solution.
0:27:36.26 –> 0:27:38.67 So I think that that’s, that’s really key
0:27:38.67 –> 0:27:41.62 and that’s the real power of how this program was designed.
0:27:48.111 –> 0:27:51.653 - Well, I’m not seeing any other questions
0:27:51.653 –> 0:27:55.01 so I wanna thank everyone for joining us today.
Thank you to our faculty members and program team for being on with us to talk a little bit more about the program. As I mentioned we have other open house events throughout the week. Definitely join us. Hi. Do you have a question to them? Go ahead. Hi, I’m Tom Hayden, really excited. Just, I get excited hearing you talk about environmental health science. So it’s, it’s a good thing. I’m curious. I am struggling with, I really focused on environmental health, sciences and informatics, and I’m having a hard time with trying to figure out how to work, you know. I’m curious for the different in the environmental health sciences track are you able to take different courses? I know that some, like with informatics, it’s kind of you each one builds upon the previous one. And so it’d be weird to jump. You can’t jump into necessarily the third course because you didn’t get the prior to it might not be as easy to follow along.
0:29:10.676 –> 0:29:12.725 with the third course as if you weren’t in the previous.
0:29:12.725 –> 0:29:14.491 And so I’m curious with the EHS pro track
0:29:14.491 –> 0:29:17.04 is it possible to actually, you know, if I did the first
0:29:17.04 –> 0:29:18.627 and maybe the third or the second and the third
0:29:18.627 –> 0:29:20.752 or if I did, you know, or is it that they each, you know
0:29:20.752 –> 0:29:24.663 you need to take each one relate to get two, to do each one.
0:29:24.663 –> 0:29:27.17 I mean, if I wanted to do the third class
0:29:27.17 –> 0:29:30.783 do I need to take the previous two?
0:29:32.74 –> 0:29:34.451 - But again, my quick response is
0:29:34.451 –> 0:29:37.774 that these are three separate courses.
0:29:37.774 –> 0:29:41.627 The only independent is not just build upon another one.
0:29:41.627 –> 0:29:44.77 For example, all the tours, talk
0:29:44.77 –> 0:29:48.41 about the one us not to rely on the knowledge, but again
0:29:48.41 –> 0:29:50.829 the reason we talk about the
0:29:50.829 –> 0:29:52.83 why we putting all this together, we have scientific link
0:29:52.83 –> 0:29:55.763 the address, the question from different angle
0:29:55.763 –> 0:29:58.636 but the artists start with independent.
0:29:58.636 –> 0:30:00.803 The so you can take from one of us or the one
0:30:00.803 –> 0:30:03.21 cause we used to get management and policy
0:30:04.43 –> 0:30:06.463 but then you kept some question.
0:30:07.306 –> 0:30:08.603 You mind the, how we get this data.
0:30:10.216 –> 0:30:13 But again, that answer by first of course, right
0:30:13 –> 0:30:15.04 how we do this first design.
0:30:15.04 –> 0:30:16.14 But if we want to know
0:30:17.031 –> 0:30:18.51 about what is the specific chemical compound
0:30:18.51 –> 0:30:22.49 what tools people use to ping pong specific aging
0:30:22.49 –> 0:30:25.25 in these exposure is this association
0:30:25.25 –> 0:30:27.28 but that’s the second cause of what a cover.
0:30:27.28 –> 0:30:32.28 So I think you can take, take this in different orders
0:30:33.74 –> 0:30:37.25 in random order, but based on your schedule, but again
0:30:37.25 –> 0:30:41.293 the underlying knowledge underlying link between
this.
0:30:42.271 –> 0:30:43.104 But again, that’s the hallway.
0:30:43.991 –> 0:30:45.22 They adjust the crushing from different perspective
0:30:48.427 –> 0:30:49.26 but again, you can take the sort of the one first to
match.
0:30:50.585 –> 0:30:52.225 They’re all second, I’m gonna take the second one.
0:30:52.225 –> 0:30:53.513 I don’t think it doesn’t any, any requirement.
0:30:54.576 –> 0:30:55.489 You have to take these
0:30:55.489 –> 0:30:56.92 in this order, but Paul, you, you, you
0:30:56.92 –> 0:30:59.41 you have any, any other suggestions?
0:30:59.41 –> 0:31:01.14 - Well, let me just say there there is
0:31:01.14 –> 0:31:03.81 and it’s actually to be determined
0:31:03.81 –> 0:31:05.35 for environmental health sciences.
0:31:05.35 –> 0:31:09.446 There will be a specific order of the courses
0:31:09.446 –> 0:31:12.357 but I think your question Tom has to do with the
0:31:12.357 –> 0:31:16.02 the knowledge and skills that one would need
0:31:16.02 –> 0:31:18.566 as a prerequisite to take a course.
0:31:18.566 –> 0:31:20.7 So in the case of VHS
0:31:20.7 –> 0:31:23.15 I think it’s fair to say as professors
0:31:23.15 –> 0:31:26.53 you said that, you know, you can take the third course
0:31:26.53 –> 0:31:28.67 in the sequence and benefit fully
0:31:28.67 –> 0:31:32.02 without taking the first two for this track.
0:31:32.02 –> 0:31:34.674 If you’re interested in epidemiology, I would say, you
know
0:31:34.674 –> 0:31:37.38 if you’re going to be taking the third course
0:31:38.505 –> 0:31:41.008 in that sequence, advanced analytic methods and epi
0:31:41.008 –> 0:31:43.87 if you didn’t have a very, very strong foundation
0:31:43.87 –> 0:31:46.47 in epidemiology and basic analytic methods
it would be a very challenging experience for you. So the question of what you need as a prerequisite you know, as has been said, EHS, wouldn’t be one of those in terms of physically, when you would take a course there will be a predefined sequencing of when you will be taking the courses. Now, one of the interesting things that I need to think about is that say you’re interested in another course not to take it for credit or even audited but just to sort of peek in and view some of the lectures just as sort of a one-off experience. You know, I think that’s a good question that you didn’t ask, but that one that I need to answer. So I will actually think about that and consult with my colleagues because I think there would be a benefit to sort of having a key that you can unlock and you just watch a random video for your own interest in edification, not necessarily for credit or for the program sequencing. Thank you. That sounds great.

That’s the question that I wish I asked that was, yeah thank you. I don’t necessarily have a question. I just wanted to say a few things things I wanted to thank you for this presentation. It was coming in, definitely
Applying with settled on epidemiology track and I was having a hard time being overwhelmed with all these amazing options within the other three tracks. And I think now visiting these sort of informational sessions gave me a lot of clarity on how I want to supplement my education and my chosen track and epidemiology. And when it comes to new environmental health and the effects of environmental pollution pollutants on human health is rings very close to me because I was born slightly a few years before Chernobyl explosion in on the border of Ukraine and Belarus. I grew up in poster novel environment and it was, I mean everything was awful lives were governed by the often mass of the Chernobyl catastrophe. My family had resources to move away temporarily but we still had to come back because not all my family could move away. So, and I could, I kept coming back year after year and seeing sort of the damages. And even though it's almost been 40 years I think many substances have different half-life. So the scary part is that even 50 years there will be another some other element will be radioactive. And many of my friends, even though they Mo many of them moved away a relocated thyroid cancer followed down.
some got diagnosed here, you know
years and years, decades after exposure.
And I think it will be a huge loss
for me not to take a class, you know
in this track and to get a better understanding
on the molecular level potentially.
And, I guess, to work with
with all of you or to, to, to, to work with all of you.
And I learned from you and
and learn from your expertise in this field.
- Well, if I could just say
thank you so much for sharing that
because one of the things that I just mentioned is
that in classes that I, that I teach
I also teach undergraduates
the teaching about Chernobyl teaching, about Bhopal teaching
about these things to them is it is a history lesson
and that they have gotten so many
of the lessons that we need to know, and we need to build
into what we do that it’s really important to use these
these events, to understand
you know, hazard risk, environmental exposures.
I, I happen to have done a time
in the government with president Obama and was in charge
of the response to focus Shima the focus Shima meltdown.
And so these things are very much high in our
consciousness when we discuss these
important environmental health issues.
So thank you.
Thank you.

It’s amazing how it, I mean, how it is a history lesson, but it’s still a reality for the populations even though it’s just not on our minds anymore.

Yeah. I mean, I think the initially early in early years we had radiation safety class where we had to put gas masks on. And, but even then sort of for a really free really really young students as we were really young students it was already a laughing matter, you know because we were all laughing about, you know just basically how we look funny in this gas masks, right.

More than what is protecting us from.

And, and let’s, let’s be honest about it the young generation of environmentalist.

So, so, so concerned about how we respond to climate change that there’ll be happy to say, well nuclear is the solution, and let’s just go full into nuclear and just say, let’s be thoughtful about these things.

So having to provide that product context and letting people know those, those important issues I’m so glad that you raised because it’s important to be thoughtful.

And I think, I mean in terms of Chernobyl is definitely could have been we could have learned a lot more than we are learning from it now.
If the government was transparent, because I think the reason why people were forced to forget as soon as possible by not providing by hiding the records, medical records, wow. Hundreds of thousands of medical records disappearing. And so that not, not so that the, that couldn’t be being between a clear link between the environmental exposure and certain cancers, for instance or a certain birth defects. Definitely. I mean, even, I think it took a few days to even tell people we were playing outside. It rained in many places depending on where winds got went, and then the, they it was not the catastrophe wasn’t announced for a few days.

- Any other last questions, comments, topics of discussion.

All right, thank you again to everyone. So much. We hope to connect with you in the coming weeks as always, we’re here to help. So don’t hesitate at all to reach out if you have questions, comments, concerns really anything you want to talk about in regards to the program. We are always here.

I know almost all of you already, I’ve communicated with you have my contact information, but our office of admissions general contact is a great place to go and we can help direct you anywhere as needed.
0:40:13.819 –> 0:40:15.34 So thank you all again so much for your time
0:40:15.34 –> 0:40:16.45 and we hope you have a great rest of the afternoon.
0:40:16.45 –> 0:40:18.281 - Thank everyone
0:40:18.281 –> 0:40:20.503 - Thank you.