2024
Comparative Effectiveness of Second-Line Antihyperglycemic Agents for Cardiovascular Outcomes A Multinational, Federated Analysis of LEGEND-T2DM
Khera R, Aminorroaya A, Dhingra L, Thangaraj P, Pedroso Camargos A, Bu F, Ding X, Nishimura A, Anand T, Arshad F, Blacketer C, Chai Y, Chattopadhyay S, Cook M, Dorr D, Duarte-Salles T, DuVall S, Falconer T, French T, Hanchrow E, Kaur G, Lau W, Li J, Li K, Liu Y, Lu Y, Man K, Matheny M, Mathioudakis N, McLeggon J, McLemore M, Minty E, Morales D, Nagy P, Ostropolets A, Pistillo A, Phan T, Pratt N, Reyes C, Richter L, Ross J, Ruan E, Seager S, Simon K, Viernes B, Yang J, Yin C, You S, Zhou J, Ryan P, Schuemie M, Krumholz H, Hripcsak G, Suchard M. Comparative Effectiveness of Second-Line Antihyperglycemic Agents for Cardiovascular Outcomes A Multinational, Federated Analysis of LEGEND-T2DM. Journal Of The American College Of Cardiology 2024, 84: 904-917. PMID: 39197980, DOI: 10.1016/j.jacc.2024.05.069.Peer-Reviewed Original ResearchConceptsGLP-1 RAsSecond-line agentsGLP-1Antihyperglycemic agentsCardiovascular diseaseMACE riskGlucagon-like peptide-1 receptor agonistsSodium-glucose cotransporter 2 inhibitorsPeptide-1 receptor agonistsDipeptidyl peptidase-4 inhibitorsEffects of SGLT2isType 2 diabetes mellitusPeptidase-4 inhibitorsAdverse cardiovascular eventsCox proportional hazards modelsRandom-effects meta-analysisCardiovascular risk reductionTarget trial emulationProportional hazards modelInternal tremors and vibrations in long COVID: a cross-sectional study
Zhou T, Sawano M, Arun A, Caraballo C, Michelsen T, McAlpine L, Bhattacharjee B, Lu Y, Khera R, Huang C, Warner F, Herrin J, Iwasaki A, Krumholz H. Internal tremors and vibrations in long COVID: a cross-sectional study. The American Journal Of Medicine 2024 PMID: 39069199, DOI: 10.1016/j.amjmed.2024.07.008.Peer-Reviewed Original ResearchNew-onset conditionsInternal tremorLong COVID symptomsCOVID symptomsNon-Hispanic whitesCross-sectional studyQuality of lifeVisual analogue scaleWorse healthHealth statusStudy participantsDemographic characteristicsAnalogue scaleOutcome variablesNeurological conditionsLong COVIDMast cell disordersTreatment experienceHealthComorbiditiesSymptomsMedian agePeopleCell disordersExcess Cardiovascular Mortality Among Black Americans 2000-2022
Arun A, Sawano M, Lu Y, Warner F, Caraballo C, Khera R, Echols M, Yancy C, Krumholz H. Excess Cardiovascular Mortality Among Black Americans 2000-2022. Journal Of The American College Of Cardiology 2024, 84: 581-588. PMID: 38901531, DOI: 10.1016/j.jacc.2024.06.004.Peer-Reviewed Original ResearchA Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression
Oikonomou E, Holste G, Yuan N, Coppi A, McNamara R, Haynes N, Vora A, Velazquez E, Li F, Menon V, Kapadia S, Gill T, Nadkarni G, Krumholz H, Wang Z, Ouyang D, Khera R. A Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression. JAMA Cardiology 2024, 9: 534-544. PMID: 38581644, PMCID: PMC10999005, DOI: 10.1001/jamacardio.2024.0595.Peer-Reviewed Original ResearchCardiac magnetic resonanceAortic valve replacementCardiac magnetic resonance imagingAV VmaxSevere ASAortic stenosisCohort studyPeak aortic valve velocityCohort study of patientsAortic valve velocityCohort of patientsTraditional cardiovascular risk factorsAssociated with faster progressionStudy of patientsCedars-Sinai Medical CenterAssociated with AS developmentCardiovascular risk factorsCardiovascular imaging modalitiesIndependent of ageModerate ASEjection fractionEchocardiographic studiesValve replacementRisk stratificationCardiac structureThe PAX LC Trial: A Decentralized, Phase 2, Randomized, Double-blind Study of Nirmatrelvir/Ritonavir Compared with Placebo/Ritonavir for Long COVID
Krumholz H, Sawano M, Bhattacharjee B, Caraballo C, Khera R, Li S, Herrin J, Coppi A, Holub J, Henriquez Y, Johnson M, Goddard T, Rocco E, Hummel A, Al Mouslmani M, Putrino D, Carr K, Carvajal-Gonzalez S, Charnas L, De Jesus M, Ziegler F, Iwasaki A. The PAX LC Trial: A Decentralized, Phase 2, Randomized, Double-blind Study of Nirmatrelvir/Ritonavir Compared with Placebo/Ritonavir for Long COVID. The American Journal Of Medicine 2024 PMID: 38735354, DOI: 10.1016/j.amjmed.2024.04.030.Peer-Reviewed Original ResearchLC trialPROMIS-29Participants' homesTargeting viral persistencePlacebo-controlled trialDouble-blind studyElectronic health recordsCore Outcome MeasuresLong COVIDEQ-5D-5LRepeated measures analysisEvidence-based treatmentsPhase 2Double-blindParticipant-centred approachStudy drugPrimary endpointSecondary endpointsCommunity-dwellingHealth recordsHealthcare utilizationContiguous US statesViral persistencePatient groupDrug treatmentReal-world evaluation of an algorithmic machine-learning-guided testing approach in stable chest pain: a multinational, multicohort study
Oikonomou E, Aminorroaya A, Dhingra L, Partridge C, Velazquez E, Desai N, Krumholz H, Miller E, Khera R. Real-world evaluation of an algorithmic machine-learning-guided testing approach in stable chest pain: a multinational, multicohort study. European Heart Journal - Digital Health 2024, 5: 303-313. PMID: 38774380, PMCID: PMC11104476, DOI: 10.1093/ehjdh/ztae023.Peer-Reviewed Original ResearchRisk of acute myocardial infarctionAssociated with lower oddsHospital health systemCoronary artery diseaseCardiac testingRisk of adverse outcomesUK BiobankHealth systemProvider-drivenLower oddsAssociated with better outcomesAcute myocardial infarctionBlack raceStable chest painFemale sexReal world evaluationDiabetes historyMulticohort studyFunction testsSuspected coronary artery diseaseYounger ageRisk profileAdverse outcomesMultinational cohortPost hoc analysisCOMPARATIVE CARDIOVASCULAR EFFECTIVENESS OF ANTI-HYPERGLYCEMIC AGENTS INITIATED AS SECOND-LINE THERAPY IN TYPE 2 DIABETES: A LARGE-SCALE, MULTINATIONAL, FEDERATED TARGET TRIAL EMULATION IN THE LEGEND-T2DM STUDY
Khera R, Aminorroaya A, Dhingra L, Bu F, Camargos A, Falconer T, Zhou J, Dorr D, French T, Lau W, Lu Y, Blacketer C, Reyes C, Minty E, Li K, Man K, Ostropolets A, Nishimura A, Matheny M, Yang J, Ryan P, Y.F. W, Krumholz H, Hripcsak G, Suchard M. COMPARATIVE CARDIOVASCULAR EFFECTIVENESS OF ANTI-HYPERGLYCEMIC AGENTS INITIATED AS SECOND-LINE THERAPY IN TYPE 2 DIABETES: A LARGE-SCALE, MULTINATIONAL, FEDERATED TARGET TRIAL EMULATION IN THE LEGEND-T2DM STUDY. Journal Of The American College Of Cardiology 2024, 83: 1977. DOI: 10.1016/s0735-1097(24)03967-6.Peer-Reviewed Original Research
2023
An explainable machine learning-based phenomapping strategy for adaptive predictive enrichment in randomized clinical trials
Oikonomou E, Thangaraj P, Bhatt D, Ross J, Young L, Krumholz H, Suchard M, Khera R. An explainable machine learning-based phenomapping strategy for adaptive predictive enrichment in randomized clinical trials. Npj Digital Medicine 2023, 6: 217. PMID: 38001154, PMCID: PMC10673945, DOI: 10.1038/s41746-023-00963-z.Peer-Reviewed Original ResearchEligibility for Cardiovascular Risk Reduction Therapy in the United States Based on SELECT Trial Criteria: Insights From the National Health and Nutrition Examination Survey
Lu Y, Liu Y, Jastreboff A, Khera R, Ndumele C, Rodriguez F, Watson K, Krumholz H. Eligibility for Cardiovascular Risk Reduction Therapy in the United States Based on SELECT Trial Criteria: Insights From the National Health and Nutrition Examination Survey. Circulation Cardiovascular Quality And Outcomes 2023, 17: e010640. PMID: 37950677, PMCID: PMC10782930, DOI: 10.1161/circoutcomes.123.010640.Peer-Reviewed Original ResearchPredicting aortic stenosis progression using a video-based deep learning model of aortic stenosis built for single-view two-dimensional echocardiography
Oikonomou E, Holste G, Mcnamara R, Velazquez E, Nadkarni G, Ouyang D, Krumholz H, Wang Z, Khera R. Predicting aortic stenosis progression using a video-based deep learning model of aortic stenosis built for single-view two-dimensional echocardiography. European Heart Journal 2023, 44: ehad655.040. DOI: 10.1093/eurheartj/ehad655.040.Peer-Reviewed Original ResearchLeft ventricular ejection fractionSevere aortic stenosisAortic stenosisAS progressionAV VmaxTransthoracic echocardiographyYale New Haven Health SystemBaseline left ventricular ejection fractionAortic stenosis progressionModerate aortic stenosisRetrospective cohort studyVentricular ejection fractionTwo-dimensional echocardiographyMean rateModerate ASAS severityCohort studyEjection fractionPatient sexStenosis progressionTTE studiesEligible participantsSerial monitoringSpecialized centersTimely diagnosisMultinational patterns of second line antihyperglycaemic drug initiation across cardiovascular risk groups: federated pharmacoepidemiological evaluation in LEGEND-T2DM
Khera R, Dhingra L, Aminorroaya A, Li K, Zhou J, Arshad F, Blacketer C, Bowring M, Bu F, Cook M, Dorr D, Duarte-Salles T, DuVall S, Falconer T, French T, Hanchrow E, Horban S, Lau W, Li J, Liu Y, Lu Y, Man K, Matheny M, Mathioudakis N, McLemore M, Minty E, Morales D, Nagy P, Nishimura A, Ostropolets A, Pistillo A, Posada J, Pratt N, Reyes C, Ross J, Seager S, Shah N, Simon K, Wan E, Yang J, Yin C, You S, Schuemie M, Ryan P, Hripcsak G, Krumholz H, Suchard M. Multinational patterns of second line antihyperglycaemic drug initiation across cardiovascular risk groups: federated pharmacoepidemiological evaluation in LEGEND-T2DM. BMJ Medicine 2023, 2: e000651. PMID: 37829182, PMCID: PMC10565313, DOI: 10.1136/bmjmed-2023-000651.Peer-Reviewed Original ResearchType 2 diabetes mellitusSecond-line treatmentCardiovascular risk groupsDiabetes mellitusCardiovascular diseaseAntihyperglycaemic drugsLine treatmentRisk groupsObservational Health Data SciencesGlucagon-like peptide-1 receptor agonistsElectronic health recordsSodium-glucose cotransporter 2 inhibitorsCalendar year trendsPeptide-1 receptor agonistsUS databaseOutcomes of patientsCotransporter 2 inhibitorsAdministrative claims databaseSecond-line drugsHealth recordsSodium-glucose cotransporter-2 inhibitorsMedication useMetformin monotherapyGuideline recommendationsOutcome measuresSevere aortic stenosis detection by deep learning applied to echocardiography
Holste G, Oikonomou E, Mortazavi B, Coppi A, Faridi K, Miller E, Forrest J, McNamara R, Ohno-Machado L, Yuan N, Gupta A, Ouyang D, Krumholz H, Wang Z, Khera R. Severe aortic stenosis detection by deep learning applied to echocardiography. European Heart Journal 2023, 44: 4592-4604. PMID: 37611002, PMCID: PMC11004929, DOI: 10.1093/eurheartj/ehad456.Peer-Reviewed Original ResearchUse of Smart Devices to Track Cardiovascular Health Goals in the United States
Aminorroaya A, Dhingra L, Nargesi A, Oikonomou E, Krumholz H, Khera R. Use of Smart Devices to Track Cardiovascular Health Goals in the United States. JACC Advances 2023, 2: 100544. PMID: 38094515, PMCID: PMC10718569, DOI: 10.1016/j.jacadv.2023.100544.Peer-Reviewed Original ResearchHealth goalsRisk of cardiovascular diseaseCardiovascular risk factorsNationally representative Health Information National Trends SurveyHealth Information National Trends SurveyU.S. adultsCardiovascular diseaseNational Trends SurveyRisk factors of hypertensionDigital health interventionsCardiovascular health goalsHealth-related goalsRisk of CVDFactors of hypertensionU.S. adult populationCardiovascular risk managementHigher educational attainmentLow-income individualsSmart devicesTrends SurveyImprove careHealth interventionsNational estimatesRisk factorsSurvey participantsDetection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images
Sangha V, Nargesi A, Dhingra L, Khunte A, Mortazavi B, Ribeiro A, Banina E, Adeola O, Garg N, Brandt C, Miller E, Ribeiro A, Velazquez E, Giatti L, Barreto S, Foppa M, Yuan N, Ouyang D, Krumholz H, Khera R. Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images. Circulation 2023, 148: 765-777. PMID: 37489538, PMCID: PMC10982757, DOI: 10.1161/circulationaha.122.062646.Peer-Reviewed Original ResearchConceptsLV systolic dysfunctionYale-New Haven HospitalVentricular systolic dysfunctionSystolic dysfunctionLV ejection fractionBrazilian Longitudinal StudyNew Haven HospitalEjection fractionCardiology clinicRegional hospitalLeft ventricular systolic dysfunctionCedars-Sinai Medical CenterAdult Health (ELSA-Brasil) cohortDetection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices
Khunte A, Sangha V, Oikonomou E, Dhingra L, Aminorroaya A, Mortazavi B, Coppi A, Brandt C, Krumholz H, Khera R. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices. Npj Digital Medicine 2023, 6: 124. PMID: 37433874, PMCID: PMC10336107, DOI: 10.1038/s41746-023-00869-w.Peer-Reviewed Original ResearchArtificial intelligenceRandom Gaussian noiseNoisy electrocardiogramGaussian noiseElectrocardiogram (ECGWearable devicesSingle-lead electrocardiogramPortable devicesSNRWearableNoiseDevice noiseRepositoryAI-based screeningIntelligenceDetectionDevicesNoise sourcesVentricular systolic dysfunctionModelElectrocardiogramSingle-lead electrocardiographyTrainingPatterns of Digoxin Prescribing for Medicare Beneficiaries in the United States 2013-2019
See C, Wheelock K, Caraballo C, Khera R, Annapureddy A, Mahajan S, Lu Y, Krumholz H, Murugiah K. Patterns of Digoxin Prescribing for Medicare Beneficiaries in the United States 2013-2019. American Journal Of Medicine Open 2023, 10: 100048. PMID: 38213879, PMCID: PMC10783702, DOI: 10.1016/j.ajmo.2023.100048.Peer-Reviewed Original ResearchDigoxin prescriptionDigoxin useNew heart failure therapiesGeneral medicine physiciansHeart failure therapyMedicare Part D dataPart D dataDigoxin prescribingFailure therapyPrescriber characteristicsMedicine physiciansMedicare beneficiariesPrescribersLikely maleLogistic regressionDigoxinNew prescribersPrescriptionRecent dataCardiologyUse of Wearable Devices in Individuals With or at Risk for Cardiovascular Disease in the US, 2019 to 2020
Dhingra L, Aminorroaya A, Oikonomou E, Nargesi A, Wilson F, Krumholz H, Khera R. Use of Wearable Devices in Individuals With or at Risk for Cardiovascular Disease in the US, 2019 to 2020. JAMA Network Open 2023, 6: e2316634. PMID: 37285157, PMCID: PMC10248745, DOI: 10.1001/jamanetworkopen.2023.16634.Peer-Reviewed Original ResearchConceptsHealth Information National Trends SurveyUS adultsExacerbate disparitiesWearable device usersCardiovascular diseaseCardiovascular healthPopulation-based cross-sectional studySelf-reported cardiovascular diseaseCardiovascular disease risk factorsNational Trends SurveyOverall US adult populationCardiovascular risk factor profileSelf-reported accessAssociated with lower useUse of wearable devicesImprove cardiovascular healthLower household incomeLower educational attainmentUS adult populationRisk factor profileNationally representative sampleCross-sectional studyProportion of adultsTrends SurveyWearable device dataSex Difference in Outcomes of Acute Myocardial Infarction in Young Patients
Sawano M, Lu Y, Caraballo C, Mahajan S, Dreyer R, Lichtman J, D'Onofrio G, Spatz E, Khera R, Onuma O, Murugiah K, Spertus J, Krumholz H. Sex Difference in Outcomes of Acute Myocardial Infarction in Young Patients. Journal Of The American College Of Cardiology 2023, 81: 1797-1806. PMID: 37137590, DOI: 10.1016/j.jacc.2023.03.383.Peer-Reviewed Original ResearchConceptsAcute myocardial infarctionNoncardiac hospitalizationsSubdistribution HRYounger patientsMyocardial infarctionSex differencesYoung womenCause-specific hospitalizationsCause of hospitalizationWorse health statusSignificant sex disparityNoncardiovascular hospitalizationsVIRGO StudyIndex episodeAdverse outcomesIncidence rateHospitalizationHigh riskSex disparitiesHealth statusPatientsU.S. hospitalsWomenInfarctionOutcomesDeveloping Validated Tools to Identify Pulmonary Embolism in Electronic Databases: Rationale and Design of the PE-EHR+ Study
Bikdeli B, Lo Y, Khairani C, Bejjani A, Jimenez D, Barco S, Mahajan S, Caraballo C, Secemsky E, Klok F, Hunsaker A, Aghayev A, Muriel A, Wang Y, Hussain M, Appah-Sampong A, Lu Y, Lin Z, Aneja S, Khera R, Goldhaber S, Zhou L, Monreal M, Krumholz H, Piazza G. Developing Validated Tools to Identify Pulmonary Embolism in Electronic Databases: Rationale and Design of the PE-EHR+ Study. Thrombosis And Haemostasis 2023, 123: 649-662. PMID: 36809777, PMCID: PMC11200175, DOI: 10.1055/a-2039-3222.Peer-Reviewed Original ResearchConceptsElectronic health recordsNLP algorithmNatural language processing toolsLanguage processing toolsPrincipal discharge diagnosisICD-10 codesDischarge diagnosisNLP toolsChart reviewHealth systemProcessing toolsYale New Haven Health SystemPatient identificationElectronic databasesHealth recordsData validationHigh-risk PEPulmonary Embolism ResearchSecondary discharge diagnosisIdentification of patientsManual chart reviewNegative predictive valueCodeRadiology reportsAlgorithmNonexercise machine learning models for maximal oxygen uptake prediction in national population surveys.
Liu Y, Herrin J, Huang C, Khera R, Dhingra L, Dong W, Mortazavi B, Krumholz H, Lu Y. Nonexercise machine learning models for maximal oxygen uptake prediction in national population surveys. Journal Of The American Medical Informatics Association 2023, 30: 943-952. PMID: 36905605, PMCID: PMC10114129, DOI: 10.1093/jamia/ocad035.Peer-Reviewed Original Research