2025
Complete AI-Enabled Echocardiography Interpretation With Multitask Deep Learning
Holste G, Oikonomou E, Tokodi M, Kovács A, Wang Z, Khera R. Complete AI-Enabled Echocardiography Interpretation With Multitask Deep Learning. JAMA 2025, 334: 306-318. PMID: 40549400, PMCID: PMC12186137, DOI: 10.1001/jama.2025.8731.Peer-Reviewed Original ResearchMultitask deep learningAI systemsDiagnostic classification tasksClassification taskDeep learningArtificial intelligenceArea under the receiver operating characteristic curveYale New Haven Health SystemTransthoracic echocardiography studyTransthoracic echocardiographyVentricular systolic dysfunctionParameter estimation taskSystolic dysfunctionDiagnosis tasksEchocardiographic videosRight ventricular systolic dysfunctionLeft ventricular ejection fractionAI predictionsEstimation taskVentricular ejection fractionSevere aortic stenosisManual reportingReceiver operating characteristic curveTaskClinical workflowHarnessing Artificial Intelligence for Innovation in Interventional Cardiovascular Care
Aminorroaya A, Biswas D, Pedroso A, Khera R. Harnessing Artificial Intelligence for Innovation in Interventional Cardiovascular Care. Journal Of The Society For Cardiovascular Angiography & Interventions 2025, 4: 102562. PMID: 40230673, PMCID: PMC11993883, DOI: 10.1016/j.jscai.2025.102562.Peer-Reviewed Original ResearchClinical careCommunity-based screening programCare quality outcomesPatient outcomesPatient-focused careHarness artificial intelligenceArtificial intelligencePotential of AIImprove patient outcomesIndividualized clinical careTransform careTransform clinical practiceCardiovascular careScreening programHealth dataQuality outcomesCareClinical workflowClinical tasksAcute coronary syndromeClinical practiceHeart diseaseAI-driven technologiesInterventionAI-enabled
2024
Artificial intelligence-enhanced patient evaluation: bridging art and science
Oikonomou E, Khera R. Artificial intelligence-enhanced patient evaluation: bridging art and science. European Heart Journal 2024, 45: 3204-3218. PMID: 38976371, PMCID: PMC11400875, DOI: 10.1093/eurheartj/ehae415.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsData Interoperability for Ambulatory Monitoring of Cardiovascular Disease: A Scientific Statement From the American Heart Association
Armoundas A, Ahmad F, Bennett D, Chung M, Davis L, Dunn J, Narayan S, Slotwiner D, Wiley K, Khera R, Care P. Data Interoperability for Ambulatory Monitoring of Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation Genomic And Precision Medicine 2024, 17: e000095. PMID: 38779844, PMCID: PMC11703599, DOI: 10.1161/hcg.0000000000000095.Peer-Reviewed Original ResearchConceptsData interoperabilityDeployment of platformsInteroperability frameworkSoftware applicationsData integrationWearable devicesData ecosystemInteroperabilityMonitoring of cardiovascular diseasesQuality of dataDiverse health systemsClinical workflowTransform health careDataScientific statementCardiovascular diseaseClinical contentAmerican Heart AssociationCaregivers' accessHealth systemHealth care
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply