2025
Changes in Cardiovascular Risk Factors and Health Care Expenditures Among Patients Prescribed Semaglutide
Lu Y, Liu Y, Totojani T, Kim C, Khera R, Xu H, Brush J, Krumholz H, Abaluck J. Changes in Cardiovascular Risk Factors and Health Care Expenditures Among Patients Prescribed Semaglutide. JAMA Network Open 2025, 8: e2526013. PMID: 40779264, PMCID: PMC12334959, DOI: 10.1001/jamanetworkopen.2025.26013.Peer-Reviewed Original ResearchConceptsHealth care expendituresCardiovascular risk factorsCare expendituresCohort studyRisk factorsYale New Haven Health SystemCohort study of adultsType 2 diabetes statusLong-term impactStudy of adultsHealth systemRetrospective cohort studyBlood pressureHemoglobin A1c reductionMain OutcomesTotal cholesterolSentara HealthcareInpatient staySecondary outcomesGlucagon-like peptide-1 receptor agonistsPrimary outcomeHealthPeptide-1 receptor agonistsAssociated with clinical outcomesAssociated with reductionsComplete AI-Enabled Echocardiography Interpretation With Multitask Deep Learning
Holste G, Oikonomou E, Tokodi M, Kovács A, Wang Z, Khera R. Complete AI-Enabled Echocardiography Interpretation With Multitask Deep Learning. JAMA 2025, 334: 306-318. PMID: 40549400, PMCID: PMC12186137, DOI: 10.1001/jama.2025.8731.Peer-Reviewed Original ResearchMultitask deep learningAI systemsDiagnostic classification tasksClassification taskDeep learningArtificial intelligenceArea under the receiver operating characteristic curveYale New Haven Health SystemTransthoracic echocardiography studyTransthoracic echocardiographyVentricular systolic dysfunctionParameter estimation taskSystolic dysfunctionDiagnosis tasksEchocardiographic videosRight ventricular systolic dysfunctionLeft ventricular ejection fractionAI predictionsEstimation taskVentricular ejection fractionSevere aortic stenosisManual reportingReceiver operating characteristic curveTaskClinical workflowArtificial intelligence-enabled electrocardiography and echocardiography to track preclinical progression of transthyretin amyloid cardiomyopathy
Oikonomou E, Sangha V, Vasisht Shankar S, Coppi A, Krumholz H, Nasir K, Miller E, Gallegos Kattan C, Al-Mallah M, Al-Kindi S, Khera R. Artificial intelligence-enabled electrocardiography and echocardiography to track preclinical progression of transthyretin amyloid cardiomyopathy. European Heart Journal 2025, ehaf450. PMID: 40679604, DOI: 10.1093/eurheartj/ehaf450.Peer-Reviewed Original ResearchTransthyretin amyloid cardiomyopathyTransthoracic echocardiographyATTR-CMAmyloid cardiomyopathyPreclinical progressAI-ECGRetrospective analysisDiagnosis of transthyretin amyloid cardiomyopathyDeep learning modelsAge/sex matched controlsRetrospective analysis of individualsLearning modelsPreclinical testingElectrocardiography imagingEchocardiographyHouston Methodist HospitalYale New Haven Health SystemAdvanced imagingElectrocardiographyPreclinical coursesCardiomyopathyPreclinical stageArtificial Intelligence–Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms
Dhingra L, Aminorroaya A, Pedroso A, Khunte A, Sangha V, McIntyre D, Chow C, Asselbergs F, Brant L, Barreto S, Ribeiro A, Krumholz H, Oikonomou E, Khera R. Artificial Intelligence–Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms. JAMA Cardiology 2025, 10: 574-584. PMID: 40238120, PMCID: PMC12004248, DOI: 10.1001/jamacardio.2025.0492.Peer-Reviewed Original ResearchYale New Haven Health SystemELSA-BrasilPCP-HFNew-onset HFHarrell's C-statisticProspective population-based cohortUK Biobank (UKBBrazilian Longitudinal StudyELSA-Brasil participantsC-statisticPopulation-based cohortIntegrated discrimination improvementReclassification improvementRisk of deathUKB participantsHealth systemRetrospective cohort studyDiscrimination improvementMain OutcomesLeft ventricular systolic dysfunctionHF riskUKBCohort studySingle-lead ECGIndependent of ageComputational Phenomapping of Randomized Clinical Trial Participants to Enable Assessment of Their Real-World Representativeness and Personalized Inference
Thangaraj P, Oikonomou E, Dhingra L, Aminorroaya A, Jayaram R, Suchard M, Khera R. Computational Phenomapping of Randomized Clinical Trial Participants to Enable Assessment of Their Real-World Representativeness and Personalized Inference. Circulation Cardiovascular Quality And Outcomes 2025, 18: e011306. PMID: 40261065, PMCID: PMC12203226, DOI: 10.1161/circoutcomes.124.011306.Peer-Reviewed Original ResearchConceptsElectronic health record patientElectronic health recordsDistance metricRandomized clinical trialsElectronic health record dataMachine learning methodsYale New Haven Health SystemElectronic health record cohortRandomized clinical trial participantsLearning methodsHeart failureClinical trial participationTOPCAT participantsReal worldMultidimensional metricRCT participantsHealth recordsTreatment effectsHealth systemCharacteristics of patientsRandomized clinical trial cohortsTrial participantsMetricsUnited StatesNovel statisticArtificial intelligence-guided detection of under-recognised cardiomyopathies on point-of-care cardiac ultrasonography: a multicentre study
Oikonomou E, Vaid A, Holste G, Coppi A, McNamara R, Baloescu C, Krumholz H, Wang Z, Apakama D, Nadkarni G, Khera R. Artificial intelligence-guided detection of under-recognised cardiomyopathies on point-of-care cardiac ultrasonography: a multicentre study. The Lancet Digital Health 2025, 7: e113-e123. PMID: 39890242, PMCID: PMC12084816, DOI: 10.1016/s2589-7500(24)00249-8.Peer-Reviewed Original ResearchConceptsYale New Haven Health SystemPoint-of-care ultrasonographyMount Sinai Health SystemTransthyretin amyloid cardiomyopathyArtificial intelligenceHealth systemAmyloid cardiomyopathyHypertrophic cardiomyopathyRetrospective cohort of individualsCardiomyopathy casesTesting artificial intelligenceConvolutional neural networkSinai Health SystemCohort of individualsOpportunistic screeningHypertrophic cardiomyopathy casesMulti-labelPositive screenAI frameworkEmergency departmentMortality riskNeural networkLoss functionCardiac ultrasonographyAugmentation approachEvaluation of a Machine Learning-Guided Strategy for Elevated Lipoprotein(a) Screening in Health Systems
Aminorroaya A, Dhingra L, Oikonomou E, Khera R. Evaluation of a Machine Learning-Guided Strategy for Elevated Lipoprotein(a) Screening in Health Systems. Circulation Genomic And Precision Medicine 2025, 18: e004632. PMID: 39846171, PMCID: PMC11835527, DOI: 10.1161/circgen.124.004632.Peer-Reviewed Original ResearchConceptsYale New Haven Health SystemHealth systemVanderbilt University Medical CenterHealth system electronic health recordUniversity Medical CenterCoronary Artery Risk DevelopmentMulti-Ethnic Study of AtherosclerosisElectronic health recordsMedical CenterUS health systemHealth system patientsAssociated with significantly higher oddsMulti-Ethnic StudyUS-based cohortStudy of atherosclerosisSignificantly higher oddsHealth recordsUK BiobankAtherosclerosis RiskRisk DevelopmentHigher oddsElevated Lp(aUniversal screeningSystem patientsStudy cohortHeart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study
Dhingra L, Aminorroaya A, Sangha V, Pedroso A, Asselbergs F, Brant L, Barreto S, Ribeiro A, Krumholz H, Oikonomou E, Khera R. Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study. European Heart Journal 2025, 46: 1044-1053. PMID: 39804243, PMCID: PMC12086686, DOI: 10.1093/eurheartj/ehae914.Peer-Reviewed Original ResearchYale New Haven Health SystemELSA-BrasilPCP-HFUK BiobankHF riskBrazilian Longitudinal Study of Adult HealthLongitudinal Study of Adult HealthBrazilian Longitudinal StudyRisk of new-onset HFPooled Cohort EquationsPrimary HF hospitalizationsHigher HF riskHarrell's C-statisticRisk of deathNew-onset HFCohort EquationsHealth systemComprehensive clinical evaluationAdult HealthHeart failureIncident HFHF hospitalizationBaseline HFC-statisticPrevent HF
2024
Validating International Classification of Diseases Code 10th Revision algorithms for accurate identification of pulmonary embolism
Bikdeli B, Khairani C, Bejjani A, Lo Y, Mahajan S, Caraballo C, Jimenez J, Krishnathasan D, Zarghami M, Rashedi S, Jimenez D, Barco S, Secemsky E, Klok F, Hunsaker A, Aghayev A, Muriel A, Hussain M, Appah-Sampong A, Lu Y, Lin Z, Mojibian H, Aneja S, Khera R, Konstantinides S, Goldhaber S, Wang L, Zhou L, Monreal M, Piazza G, Krumholz H, Investigators P. Validating International Classification of Diseases Code 10th Revision algorithms for accurate identification of pulmonary embolism. Journal Of Thrombosis And Haemostasis 2024, 23: 556-564. PMID: 39505153, DOI: 10.1016/j.jtha.2024.10.013.Peer-Reviewed Original ResearchDischarge codesInternational ClassificationICD-10Yale New Haven Health SystemPositive predictive valueMass General Brigham hospitalsAccuracy of ICD-10ICD-10 codesPulmonary embolismHealth systemImage codingElectronic databasesF1 scorePre-specified protocolExcellent positive predictive valueIndependent physiciansHighest F1 scoreIdentification of pulmonary embolismAcute pulmonary embolismSecondary codePE codesScoresIdentified PERevised algorithm
2023
Predicting aortic stenosis progression using a video-based deep learning model of aortic stenosis built for single-view two-dimensional echocardiography
Oikonomou E, Holste G, Mcnamara R, Velazquez E, Nadkarni G, Ouyang D, Krumholz H, Wang Z, Khera R. Predicting aortic stenosis progression using a video-based deep learning model of aortic stenosis built for single-view two-dimensional echocardiography. European Heart Journal 2023, 44: ehad655.040. DOI: 10.1093/eurheartj/ehad655.040.Peer-Reviewed Original ResearchLeft ventricular ejection fractionSevere aortic stenosisAortic stenosisAS progressionAV VmaxTransthoracic echocardiographyYale New Haven Health SystemBaseline left ventricular ejection fractionAortic stenosis progressionModerate aortic stenosisRetrospective cohort studyVentricular ejection fractionTwo-dimensional echocardiographyMean rateModerate ASAS severityCohort studyEjection fractionPatient sexStenosis progressionTTE studiesEligible participantsSerial monitoringSpecialized centersTimely diagnosisDeveloping Validated Tools to Identify Pulmonary Embolism in Electronic Databases: Rationale and Design of the PE-EHR+ Study
Bikdeli B, Lo Y, Khairani C, Bejjani A, Jimenez D, Barco S, Mahajan S, Caraballo C, Secemsky E, Klok F, Hunsaker A, Aghayev A, Muriel A, Wang Y, Hussain M, Appah-Sampong A, Lu Y, Lin Z, Aneja S, Khera R, Goldhaber S, Zhou L, Monreal M, Krumholz H, Piazza G. Developing Validated Tools to Identify Pulmonary Embolism in Electronic Databases: Rationale and Design of the PE-EHR+ Study. Thrombosis And Haemostasis 2023, 123: 649-662. PMID: 36809777, PMCID: PMC11200175, DOI: 10.1055/a-2039-3222.Peer-Reviewed Original ResearchConceptsElectronic health recordsNLP algorithmNatural language processing toolsLanguage processing toolsPrincipal discharge diagnosisICD-10 codesDischarge diagnosisNLP toolsChart reviewHealth systemProcessing toolsYale New Haven Health SystemPatient identificationElectronic databasesHealth recordsData validationHigh-risk PEPulmonary Embolism ResearchSecondary discharge diagnosisIdentification of patientsManual chart reviewNegative predictive valueCodeRadiology reportsAlgorithmQuantifying Blood Pressure Visit-to-Visit Variability in the Real-World Setting: A Retrospective Cohort Study
Lu Y, Linderman G, Mahajan S, Liu Y, Huang C, Khera R, Mortazavi B, Spatz E, Krumholz H. Quantifying Blood Pressure Visit-to-Visit Variability in the Real-World Setting: A Retrospective Cohort Study. Circulation Cardiovascular Quality And Outcomes 2023, 16: e009258. PMID: 36883456, DOI: 10.1161/circoutcomes.122.009258.Peer-Reviewed Original ResearchConceptsRetrospective cohort studyBlood pressure valuesPatient characteristicsReal-world settingCohort studyPatient subgroupsYale New Haven Health SystemMean body mass indexSystolic blood pressure valuesBlood pressure visitHistory of hypertensionCoronary artery diseaseManagement of patientsMultivariable linear regression modelsBlood pressure readingsBody mass indexPatient-level measuresBlood pressure variationAbsolute standardized differencesNon-Hispanic whitesAntihypertensive medicationsReal-world practiceVisit variabilityArtery diseaseRegression models
2022
A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
Khera R, Mortazavi BJ, Sangha V, Warner F, Patrick Young H, Ross JS, Shah ND, Theel ES, Jenkinson WG, Knepper C, Wang K, Peaper D, Martinello RA, Brandt CA, Lin Z, Ko AI, Krumholz HM, Pollock BD, Schulz WL. A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations. Npj Digital Medicine 2022, 5: 27. PMID: 35260762, PMCID: PMC8904579, DOI: 10.1038/s41746-022-00570-4.Peer-Reviewed Original ResearchCOVID-19 hospitalizationMayo ClinicDiagnosis codesCOVID-19 diagnosisPositive SARS-CoV-2 PCRYale New Haven Health SystemPositive SARS-CoV-2 testSARS-CoV-2 infectionSARS-CoV-2 PCRSARS-CoV-2 testCOVID-19Higher inhospital mortalitySARS-CoV2 infectionElectronic health record dataICD-10 diagnosisPositive laboratory testsHealth record dataInhospital mortalityAdditional patientsAntigen testSecondary diagnosisPrincipal diagnosisMulticenter evaluationPositive testComputable phenotype definitions
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply