2024
Contribution of climate change to the spatial expansion of West Nile virus in Europe
Erazo D, Grant L, Ghisbain G, Marini G, Colón-González F, Wint W, Rizzoli A, Van Bortel W, Vogels C, Grubaugh N, Mengel M, Frieler K, Thiery W, Dellicour S. Contribution of climate change to the spatial expansion of West Nile virus in Europe. Nature Communications 2024, 15: 1196. PMID: 38331945, PMCID: PMC10853512, DOI: 10.1038/s41467-024-45290-3.Peer-Reviewed Original ResearchConceptsWest Nile virusEcological niche modelsExpansion of West Nile virusClimate changeWNV circulationNiche modelsNile virusMosquito-borne pathogensEffects of climate changeHuman population changeSpatial expansionContributions of climate changeWest Nile virus circulationEnvironmental changesPublic health threatHuman populationLand-useHuman influencePotential driversRisk of exposureLong-term trendsPopulation densityPopulation changeHealth threatClimate
2021
Zika Virus Non-Structural Protein 1 Antigen-Capture Immunoassay
Beddingfield B, Hartnett J, Wilson R, Kulakosky P, Andersen K, Robles-Sikisaka R, Grubaugh N, Aybar A, Nunez M, Fermin C, Garry R. Zika Virus Non-Structural Protein 1 Antigen-Capture Immunoassay. Viruses 2021, 13: 1771. PMID: 34578352, PMCID: PMC8473068, DOI: 10.3390/v13091771.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, ViralAntigens, ViralCross ReactionsDengueDengue VirusEnzyme-Linked Immunosorbent AssayEpitopesFemaleFlavivirusHumansImmunoassayImmunologic TestsModels, MolecularMutagenesis, Site-DirectedPregnancyViral Nonstructural ProteinsWest Nile virusYellow fever virusZika VirusZika Virus InfectionConceptsZIKV nonstructural protein 1Nonstructural protein 1Antigen capture ELISADengue virusZika virusMild self-limiting illnessSelf-limiting illnessNS1 proteinMajor birth defectsSevere neurological diseaseYellow fever virusAntigen capture immunoassaySt. Louis encephalitis virusPolyclonal antibodiesLouis encephalitis virusWest Nile virusSerious outcomesAffinity-purified polyclonal antibodiesRelated flavivirusesNeurological diseasesRefinement of approachesEncephalitis virusWidespread flavivirusFlavivirusesFever virus
2020
Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework
Dellicour S, Lequime S, Vrancken B, Gill MS, Bastide P, Gangavarapu K, Matteson NL, Tan Y, du Plessis L, Fisher AA, Nelson MI, Gilbert M, Suchard MA, Andersen KG, Grubaugh ND, Pybus OG, Lemey P. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nature Communications 2020, 11: 5620. PMID: 33159066, PMCID: PMC7648063, DOI: 10.1038/s41467-020-19122-z.Peer-Reviewed Original ResearchConceptsGenetic diversityPopulation genetic diversityViral lineagesNon-migratory birdsViral genetic diversityMigratory bird flywaysWest Nile virusPathogen genomesDispersal historyGenome collectionMosquito dispersalBird flywaysWildlife healthLineagesPhylodynamic approachesLongitudinal gradientDispersalWNV lineagesNorth AmericaDiversityEnvironmental factorsTemporal variationComputational analysisAnalytical workflowHistorical reconstruction
2019
Endless Forms: Within-Host Variation in the Structure of the West Nile Virus RNA Genome during Serial Passage in Bird Hosts
Scroggs SLP, Grubaugh ND, Sena JA, Sundararajan A, Schilkey FD, Smith DR, Ebel GD, Hanley KA. Endless Forms: Within-Host Variation in the Structure of the West Nile Virus RNA Genome during Serial Passage in Bird Hosts. MSphere 2019, 4: e00291-19. PMID: 31243074, PMCID: PMC6595145, DOI: 10.1128/msphere.00291-19.Peer-Reviewed Original ResearchConceptsUntranslated regionSecondary structureBird speciesRNA genomeGenome cyclizationRNA virusesHost variationPrimary genomic sequenceWest Nile virusPrimary genome sequenceDS regionStructural diversityIntrahost genetic diversityVirus phenotypeComplex secondary structureVirus RNA genomeRNA secondary structureSerial passageSmall RNAsGenetic diversityNile virusGenome sequenceMutant lineagesGenomic sequencesNext-generation sequencingSmall RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection
Rückert C, Prasad AN, Garcia-Luna SM, Robison A, Grubaugh ND, Weger-Lucarelli J, Ebel GD. Small RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection. Insect Biochemistry And Molecular Biology 2019, 109: 13-23. PMID: 30959110, PMCID: PMC6516063, DOI: 10.1016/j.ibmb.2019.04.008.Peer-Reviewed Original ResearchConceptsCulex cellsSRNA responseViral DNA formsRNA interferenceMerida virusCulex mosquitoesSmall RNA responsesSmall RNA librariesCell linesWest Nile virusAntiviral RNA interferenceDNA formsHsu cellsVirus-derived DNANt siRNAsPiRNA responseRNA pathwaysSRNA readsRNA librariesWimpy testisEfficient antiviral responsePiRNAsAntiviral responseImportant virusesAedes spp
2017
Mosquitoes Transmit Unique West Nile Virus Populations during Each Feeding Episode
Grubaugh ND, Fauver JR, Rückert C, Weger-Lucarelli J, Garcia-Luna S, Murrieta RA, Gendernalik A, Smith DR, Brackney DE, Ebel GD. Mosquitoes Transmit Unique West Nile Virus Populations during Each Feeding Episode. Cell Reports 2017, 19: 709-718. PMID: 28445723, PMCID: PMC5465957, DOI: 10.1016/j.celrep.2017.03.076.Peer-Reviewed Original ResearchConceptsGenetic diversityNovel virus variantsWNV genetic diversityMost genetic diversityComplex evolutionary forcesVirus populationsEvolutionary forcesWest Nile virusGenetic driftInfection phenotypesWNV variantsIndividual mosquitoesIntrahost variantsVirus variantsTransmission cyclePopulation levelMosquitoesDiversityContinuous threatNile virusVariantsArthropodsChikungunya virusVirusLarge epidemics
2016
Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching
Grubaugh ND, Weger-Lucarelli J, Murrieta RA, Fauver JR, Garcia-Luna SM, Prasad AN, Black WC, Ebel GD. Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching. Cell Host & Microbe 2016, 19: 481-492. PMID: 27049584, PMCID: PMC4833525, DOI: 10.1016/j.chom.2016.03.002.Peer-Reviewed Original ResearchConceptsRelative fitnessMosquito speciesLower relative fitnessWest Nile virusComplex virus populationsSignificant fitness costMosquito-borne RNA virusesHost switchingGenetic driftGenetic diversityAdaptive potentialPopulation expansionFitness costsAvian cellsDeleterious mutationsMutational diversityRNA virusesBridge vectorsViral populationsVirus populationsMosquito vectorsFitnessSpeciesDiversityNile virus
2015
Experimental Evolution of an RNA Virus in Wild Birds: Evidence for Host-Dependent Impacts on Population Structure and Competitive Fitness
Grubaugh ND, Smith DR, Brackney DE, Bosco-Lauth AM, Fauver JR, Campbell CL, Felix TA, Romo H, Duggal NK, Dietrich EA, Eike T, Beane JE, Bowen RA, Black WC, Brault AC, Ebel GD. Experimental Evolution of an RNA Virus in Wild Birds: Evidence for Host-Dependent Impacts on Population Structure and Competitive Fitness. PLOS Pathogens 2015, 11: e1004874. PMID: 25993022, PMCID: PMC4439088, DOI: 10.1371/journal.ppat.1004874.Peer-Reviewed Original ResearchConceptsRNA virus populationsWNV populationsBird speciesRNA virusesNatural selectionFitness gainsVirus populationsStrength of selectionWest Nile virusSpecies-specific mannerDistinct phenotypic consequencesAverage mutation frequencyExperimental evolutionMutational toleranceError-prone replicationCompetitive fitnessPopulation structureNext-generation sequencingPhenotypic consequencesGenetic compositionWild birdsSelective pressureSequencing dataDefective genomesDifferent hosts