2025
A Bayesian Approach to the G‐Formula via Iterative Conditional Regression
Liu R, Hu L, Wilson F, Warren J, Li F. A Bayesian Approach to the G‐Formula via Iterative Conditional Regression. Statistics In Medicine 2025, 44: e70123. PMID: 40476299, PMCID: PMC12184534, DOI: 10.1002/sim.70123.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsBayes TheoremCausalityComputer SimulationHumansLongitudinal StudiesMachine LearningModels, StatisticalObservational Studies as TopicRegression AnalysisConceptsCausal effect estimationTime-varying covariatesModel misspecification biasBayesian approachReal world data examplesG-formulaAverage causal effect estimationTime-varying treatmentsBayesian additive regression treesAverage causal effectAdditive regression treesConditional expectationOutcome regressionConditional distributionJoint distributionData examplesPosterior distributionMisspecification biasParametric regressionSimulation studyEffect estimatesSampling algorithmAlgorithm formulaCausal effectsFlexible machine learning techniquesA flexible Bayesian g-formula for causal survival analyses with time-dependent confounding
Chen X, Hu L, Li F. A flexible Bayesian g-formula for causal survival analyses with time-dependent confounding. Lifetime Data Analysis 2025, 31: 394-421. PMID: 40227517, DOI: 10.1007/s10985-025-09652-3.Peer-Reviewed Original ResearchConceptsG-formulaBalance scoresHealth system electronic health recordDiscrete survival dataTime-to-event outcomesPosterior sampling algorithmParametric g-formulaElectronic health recordsBayesian additive regression treesTime-varying treatmentsHypothetical intervention scenariosAdditive regression treesLongitudinal observational studyGeneral classModel misspecificationHealth recordsEmpirical performanceSampling algorithmObservational studySurvival dataIntervention scenariosScoresTreatment strategiesMisspecificationCausality analysis
2024
Four targets: an enhanced framework for guiding causal inference from observational data
Lu H, Li F, Lesko C, Fink D, Rudolph K, Harhay M, Rentsch C, Fiellin D, Gonsalves G. Four targets: an enhanced framework for guiding causal inference from observational data. International Journal Of Epidemiology 2024, 54: dyaf003. PMID: 39868475, PMCID: PMC11769716, DOI: 10.1093/ije/dyaf003.Peer-Reviewed Original ResearchMeSH KeywordsBuprenorphineCausalityHumansObservational Studies as TopicOpioid-Related DisordersResearch Design
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply