2024
Sample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs.
Wang X, Chen X, Goldfeld K, Taljaard M, Li F. Sample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs. Statistical Methods In Medical Research 2024, 9622802241247736. PMID: 38689556, DOI: 10.1177/09622802241247736.Peer-Reviewed Original ResearchCluster randomized crossover designSample size formulaTreatment effect heterogeneityAverage treatment effectHeterogeneity of treatment effectsSize formulaRandomized crossover designCluster-randomized crossover trialRandomized crossover trialEffect heterogeneitySampling schemeCluster randomized designTreatment effectsDifferential treatment effectsCrossover designFormulaContinuous outcomesLinear mixed modelsSample sizeCrossover trialInteraction testMixed modelsCovariatesClinical characteristicsStatistical methods
2022
Missing Data
Tong G, Li F, Allen A. Missing Data. 2022, 1681-1701. DOI: 10.1007/978-3-319-52636-2_117.Peer-Reviewed Original ResearchLikelihood-based analysisMissingness modelMissingness processData mechanismAverage treatment effectStatistical methodsComplete case analysisConsistent estimatesRobust approachInverse probability weightingBiased estimatesMissingnessOutcome distributionModeling approachProbability weightingData processSensitivity analysisOutcome modelModelEstimatesBrief discussionPractical considerationsInferenceApproachImputation
2020
Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials
Yang S, Li F, Starks MA, Hernandez AF, Mentz RJ, Choudhury KR. Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials. Statistics In Medicine 2020, 39: 4218-4237. PMID: 32823372, PMCID: PMC7948251, DOI: 10.1002/sim.8721.Peer-Reviewed Original ResearchConceptsAnalysis of CRTsNumerous statistical methodsNew sample size formulaTreatment effect heterogeneitySample size proceduresFinite samplesSample size formulaStatistical methodsSize proceduresBinary covariateEffect heterogeneityEmpirical powerCovariates of interestEffect formulaParameter constellationsSize formulaAdjusted intraclass correlation coefficientsSample size requirementsExtensive simulationsHeterogeneous treatment effectsFormulaCovariate interactionsSize requirementsCluster Randomized TrialSample size
2019
Missing Data
Tong G, Li F, Allen A. Missing Data. 2019, 1-21. DOI: 10.1007/978-3-319-52677-5_117-1.Peer-Reviewed Original ResearchLikelihood-based analysisMissingness modelMissingness processData mechanismAverage treatment effectStatistical methodsComplete case analysisConsistent estimatesRobust approachInverse probability weightingBiased estimatesMissingnessOutcome distributionModeling approachProbability weightingData processSensitivity analysisOutcome modelModelEstimatesBrief discussionPractical considerationsInferenceApproachImputation