2024
Sample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs.
Wang X, Chen X, Goldfeld K, Taljaard M, Li F. Sample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs. Statistical Methods In Medical Research 2024, 9622802241247736. PMID: 38689556, DOI: 10.1177/09622802241247736.Peer-Reviewed Original ResearchCluster randomized crossover designSample size formulaTreatment effect heterogeneityAverage treatment effectHeterogeneity of treatment effectsSize formulaRandomized crossover designCluster-randomized crossover trialRandomized crossover trialEffect heterogeneitySampling schemeCluster randomized designTreatment effectsDifferential treatment effectsCrossover designFormulaContinuous outcomesLinear mixed modelsSample sizeCrossover trialInteraction testMixed modelsCovariatesClinical characteristicsStatistical methods
2023
Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations
Wang X, Turner E, Li F. Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations. Statistics In Medicine 2023, 43: 358-378. PMID: 38009329, PMCID: PMC10939061, DOI: 10.1002/sim.9966.Peer-Reviewed Original ResearchConceptsSample size proceduresConstant treatment effectCorrelation structureSize proceduresMarginal mean modelClosed-form sample size formulaCorrelation parametersSandwich variance estimatorGroup treatment trialsEquation approachExchangeable correlation structureSample size formulaBinary outcomesVariance estimatorEmpirical powerLinear timeMean modelCorrelation matrixDifferent correlation parametersEstimating EquationsSize formulaEquationsSample size calculationDifferent assumptionsProper sample size calculationAccounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity
Tong J, Li F, Harhay M, Tong G. Accounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity. BMC Medical Research Methodology 2023, 23: 85. PMID: 37024809, PMCID: PMC10077680, DOI: 10.1186/s12874-023-01887-8.Peer-Reviewed Original ResearchConceptsSample size methodsSample size proceduresSize proceduresTreatment effect heterogeneityHeterogeneous treatment effectsSize methodMissingness ratesSample size formulaSample size estimationMissingness indicatorsEffect heterogeneityReal-world examplesSimulation studyIntracluster correlation coefficientInflation methodSize formulaAverage treatment effectResultsSimulation resultsSample size estimatesSize estimationMissingnessSample sizeClustersEstimationFormula
2022
Design and analysis of cluster randomized trials with time‐to‐event outcomes under the additive hazards mixed model
Blaha O, Esserman D, Li F. Design and analysis of cluster randomized trials with time‐to‐event outcomes under the additive hazards mixed model. Statistics In Medicine 2022, 41: 4860-4885. PMID: 35908796, PMCID: PMC9588628, DOI: 10.1002/sim.9541.Peer-Reviewed Original ResearchConceptsSample size formulaCluster sizeNew sample size formulaSample size proceduresSize formulaEffect parametersSandwich variance estimatorStatistical inferenceCluster size variationEvent outcomesRandomization-based testsImproved inferenceSize proceduresTreatment effect parametersVariance estimatorSmall sample biasesAnalysis of clustersSimulation studyUnequal cluster sizesFrailty termVariance inflation factorFailure timeSample size requirementsMixed modelsAppropriate definition
2021
Power considerations for generalized estimating equations analyses of four‐level cluster randomized trials
Wang X, Turner EL, Preisser JS, Li F. Power considerations for generalized estimating equations analyses of four‐level cluster randomized trials. Biometrical Journal 2021, 64: 663-680. PMID: 34897793, PMCID: PMC9574475, DOI: 10.1002/bimj.202100081.Peer-Reviewed Original ResearchConceptsCorrelation structureClosed-form sample size formulaModel-based varianceTrue correlation structureSandwich variance estimatorSandwich varianceSample size formulaVariance functionVariance estimatorEmpirical powerCorrelation parametersCorrelation matrixEstimating EquationsSize formulaEquationsArbitrary linkPower considerationsSame clusterPower calculationEstimatorSample sizeEquation analysisClustersFormulaSample size estimation for modified Poisson analysis of cluster randomized trials with a binary outcome
Li F, Tong G. Sample size estimation for modified Poisson analysis of cluster randomized trials with a binary outcome. Statistical Methods In Medical Research 2021, 30: 1288-1305. PMID: 33826454, PMCID: PMC9132618, DOI: 10.1177/0962280221990415.Peer-Reviewed Original ResearchConceptsSample size formulaExchangeable working correlationExtensive Monte Carlo simulation studySize formulaMonte Carlo simulation studyFinite sample correctionMarginal relative riskCorresponding sample size formulaeSandwich variance estimatorVariable cluster sizesNumber of clustersAsymptotic efficiencySandwich varianceCluster size variabilityRobust sandwich varianceSample size estimationVariance estimatorAnalytical derivationSimulation studyCluster sizePoisson modelCoefficient estimatesFormulaCorrelation coefficient estimatesBinary outcomesSample size and power considerations for cluster randomized trials with count outcomes subject to right truncation
Li F, Tong G. Sample size and power considerations for cluster randomized trials with count outcomes subject to right truncation. Biometrical Journal 2021, 63: 1052-1071. PMID: 33751620, PMCID: PMC9132617, DOI: 10.1002/bimj.202000230.Peer-Reviewed Original ResearchConceptsCluster Randomized TrialPrimary outcomeGroup-based interventionRandomized trialsHealth StudySuch trialsPublic health studiesRight truncationTrialsOutcomesVector-borne diseasesCountSample size formulaAnalysis of CRTsPower calculationPopulation-level effectsSample sizeSize formulaClosed-form sample size formulaMarginal modeling approachMalariaDisease
2020
Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials
Yang S, Li F, Starks MA, Hernandez AF, Mentz RJ, Choudhury KR. Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials. Statistics In Medicine 2020, 39: 4218-4237. PMID: 32823372, PMCID: PMC7948251, DOI: 10.1002/sim.8721.Peer-Reviewed Original ResearchConceptsAnalysis of CRTsNumerous statistical methodsNew sample size formulaTreatment effect heterogeneitySample size proceduresFinite samplesSample size formulaStatistical methodsSize proceduresBinary covariateEffect heterogeneityEmpirical powerCovariates of interestEffect formulaParameter constellationsSize formulaAdjusted intraclass correlation coefficientsSample size requirementsExtensive simulationsHeterogeneous treatment effectsFormulaCovariate interactionsSize requirementsCluster Randomized TrialSample size