2024
Optimal designs using generalized estimating equations in cluster randomized crossover and stepped wedge trials
Liu J, Li F. Optimal designs using generalized estimating equations in cluster randomized crossover and stepped wedge trials. Statistical Methods In Medical Research 2024, 33: 1299-1330. PMID: 38813761, DOI: 10.1177/09622802241247717.Peer-Reviewed Original ResearchConceptsMaximin optimal designsStepped wedge cluster randomized trialLocally optimal designsCluster-period sizesClosed-form formulaCluster-randomized crossover trialCross-sectional sampling schemeInteger estimationOptimal design algorithmDesign algorithmLongitudinal cluster randomized trialsWorking correlation structureCluster randomized trialMethod of generalized estimating equationsTreatment effect estimatesSAS macroVariance expressionsExact valueCorrelation structureMaximinSampling schemeBetween-clusterOptimal designOptimization design researchEstimating equationsCRTFASTGEEPWR: A SAS Macro for Power of Generalized Estimating Equations Analysis of Multi-Period Cluster Randomized Trials with Application to Stepped Wedge Designs
Zhang Y, Preisser J, Li F, Turner E, Rathouz P. CRTFASTGEEPWR: A SAS Macro for Power of Generalized Estimating Equations Analysis of Multi-Period Cluster Randomized Trials with Application to Stepped Wedge Designs. Journal Of Statistical Software 2024, 108: 1-27. DOI: 10.18637/jss.v108.c01.Peer-Reviewed Original ResearchSAS macroMarginal mean modelCluster randomized trialContinuous responseStepped wedge designMean modelCorrelation structureGeneralized estimating equationsPower methodIncomplete designsGeneral methodWedge designStatistical powerTrial scenariosMulti-parameterEvaluation of interventionsRandomized trialsGeneralized estimating equation analysisEquationsInference
2023
GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials
Zhang Y, Preisser J, Li F, Turner E, Toles M, Rathouz P. GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials. Computer Methods And Programs In Biomedicine 2023, 230: 107362. PMID: 36709555, PMCID: PMC10037297, DOI: 10.1016/j.cmpb.2023.107362.Peer-Reviewed Original ResearchConceptsNumber of clustersBias-corrected estimationCorrelation structurePopulation-averaged interpretationMarginal regression modelsDeletion diagnosticsEstimating EquationsFinite-sample adjustmentInfluence of observationsLarge valuesStandard errorEquationsSandwich estimatorVariance estimatorCook's distanceSAS macroDesign of clusterCount outcomesLongitudinal responseCorrelation parametersValid inferencesCorrelated outcomesFlexible specificationBiased estimatesEstimator
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply