2024
Multiply robust generalized estimating equations for cluster randomized trials with missing outcomes
Rabideau D, Li F, Wang R. Multiply robust generalized estimating equations for cluster randomized trials with missing outcomes. Statistics In Medicine 2024, 43: 1458-1474. PMID: 38488532, DOI: 10.1002/sim.10027.Peer-Reviewed Original ResearchPropensity score modelMarginal regression parametersWeighted generalized estimating equationsRobust estimationCluster randomized trialRegression parametersMarginal meansMean modelIterative algorithmMonte Carlo simulationsGeneralized estimating equationsOutcome modelBotswana Combination Prevention ProjectCarlo simulationsEquationsCorrelation parametersEstimationReduce HIV incidenceHIV prevention measuresScore modelMultipliersRandomized trialsHIV incidencePrevention Project
2023
Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations
Wang X, Turner E, Li F. Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations. Statistics In Medicine 2023, 43: 358-378. PMID: 38009329, PMCID: PMC10939061, DOI: 10.1002/sim.9966.Peer-Reviewed Original ResearchConceptsSample size proceduresConstant treatment effectCorrelation structureSize proceduresMarginal mean modelClosed-form sample size formulaCorrelation parametersSandwich variance estimatorGroup treatment trialsEquation approachExchangeable correlation structureSample size formulaBinary outcomesVariance estimatorEmpirical powerLinear timeMean modelCorrelation matrixDifferent correlation parametersEstimating EquationsSize formulaEquationsSample size calculationDifferent assumptionsProper sample size calculationGEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials
Zhang Y, Preisser J, Li F, Turner E, Toles M, Rathouz P. GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials. Computer Methods And Programs In Biomedicine 2023, 230: 107362. PMID: 36709555, PMCID: PMC10037297, DOI: 10.1016/j.cmpb.2023.107362.Peer-Reviewed Original ResearchConceptsNumber of clustersBias-corrected estimationCorrelation structurePopulation-averaged interpretationMarginal regression modelsDeletion diagnosticsEstimating EquationsFinite-sample adjustmentInfluence of observationsLarge valuesStandard errorEquationsSandwich estimatorVariance estimatorCook's distanceSAS macroDesign of clusterCount outcomesLongitudinal responseCorrelation parametersValid inferencesCorrelated outcomesFlexible specificationBiased estimatesEstimator
2022
Power Analysis for Cluster Randomized Trials with Continuous Coprimary Endpoints
Yang S, Moerbeek M, Taljaard M, Li F. Power Analysis for Cluster Randomized Trials with Continuous Coprimary Endpoints. Biometrics 2022, 79: 1293-1305. PMID: 35531926, DOI: 10.1111/biom.13692.Peer-Reviewed Original ResearchConceptsMultivariate linear mixed modelTreatment effect estimatorJoint distributionEqual cluster sizesCluster sizeExpectation-maximization algorithmFinite numberEffects estimatorEmpirical powerCorrelation parametersPower analysisEstimatorSize assumptionsSample sizeNull hypothesisPower calculationPower determinationLinear mixed modelsParametersMixed models
2021
Power considerations for generalized estimating equations analyses of four‐level cluster randomized trials
Wang X, Turner EL, Preisser JS, Li F. Power considerations for generalized estimating equations analyses of four‐level cluster randomized trials. Biometrical Journal 2021, 64: 663-680. PMID: 34897793, PMCID: PMC9574475, DOI: 10.1002/bimj.202100081.Peer-Reviewed Original ResearchConceptsCorrelation structureClosed-form sample size formulaModel-based varianceTrue correlation structureSandwich variance estimatorSandwich varianceSample size formulaVariance functionVariance estimatorEmpirical powerCorrelation parametersCorrelation matrixEstimating EquationsSize formulaEquationsArbitrary linkPower considerationsSame clusterPower calculationEstimatorSample sizeEquation analysisClustersFormula
2019
Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure
Li F. Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure. Statistics In Medicine 2019, 39: 438-455. PMID: 31797438, PMCID: PMC7027591, DOI: 10.1002/sim.8415.Peer-Reviewed Original ResearchConceptsQuasi-least squaresCorrelation structureAdditional correlation parameterCluster correlation structureCorrelation parametersSample size proceduresPeriod correlationMultiple outcome measurementsSandwich varianceCorrelation decayPower proceduresSize proceduresEmpirical powerSimulation studySame clusterTrial exampleSquaresAnalysis considerationsWedge designParametersSample sizeContinuous outcomesClusters