Multiply robust estimation of principal causal effects with noncompliance and survival outcomes
Cheng C, Guo Y, Liu B, Wruck L, Li F, Li F. Multiply robust estimation of principal causal effects with noncompliance and survival outcomes. Clinical Trials 2024, 21: 553-561. PMID: 38813813, DOI: 10.1177/17407745241251773.Peer-Reviewed Original ResearchConceptsPrincipal strataRight-censored survival outcomesPrincipal causal effectsCausal effectsSensitivity analysis strategyPrincipal ignorabilityRobust estimationIdentification assumptionsCensoringPragmatic clinical trialsTreatment assignmentTreatment noncomplianceMonotonicityEstimationAssess treatment effectsCardiovascular diseaseClinical trialsMultipliersTreatment effectsAssumptionsNoncomplianceTransporting randomized trial results to estimate counterfactual survival functions in target populations
Cao Z, Cho Y, Li F. Transporting randomized trial results to estimate counterfactual survival functions in target populations. Pharmaceutical Statistics 2024, 23: 442-465. PMID: 38233102, DOI: 10.1002/pst.2354.Peer-Reviewed Original ResearchSurvival functionFinite-sample performanceSample average treatment effectApproximate variance estimatorsIncorrect model specificationAverage treatment effectRight censoringDistributions of treatment effect modifiersVariance estimationInverse probability weightingSimulation studyRobust estimationComplex surveysAverage treatmentProbability weightingTreatment effect modifiersEstimationTreatment effectsModel specificationCensoringTarget populationDifferential distributionSurvey weightsEffect modifiersFunction
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply