2025
Nonparametric Estimation of the Potential Impact Fraction and the Population Attributable Fraction With Individual‐Level and Aggregated Data
Chan C, Zepeda‐Tello R, Camacho‐García‐Formentí D, Cudhea F, Meza R, Rodrigues E, Spiegelman D, Barrientos‐Gutierrez T, Zhou X. Nonparametric Estimation of the Potential Impact Fraction and the Population Attributable Fraction With Individual‐Level and Aggregated Data. Statistics In Medicine 2025, 44: e70214. PMID: 40798868, DOI: 10.1002/sim.70214.Peer-Reviewed Original ResearchMeSH KeywordsComputer SimulationDiabetes Mellitus, Type 2HumansIncidenceMexicoModels, StatisticalStatistics, NonparametricConceptsDistributional assumptionsFinite sample performanceImpact of distributional assumptionsPotential impact fractionNonparametric estimationSample performanceDistributional violationsPopulation attributable fractionImpact fractionNonparametric methodsSimulation studyContinuous exposure dataPopulation impact fractionsAttributable fractionSugar-sweetened beverage consumptionIncidence of type 2 diabetesAssumptionsExposure distributionEstimationAggregate dataBeverage consumptionNonparametricType 2 diabetesIndividual-levelTarget populationExposure Measurement Error Correction in Longitudinal Studies With Discrete Outcomes
Yang C, Zhang N, Li J, Mehta U, Hart J, Spiegelman D, Wang M. Exposure Measurement Error Correction in Longitudinal Studies With Discrete Outcomes. Statistics In Medicine 2025, 44: e70191. PMID: 40680786, PMCID: PMC12274082, DOI: 10.1002/sim.70191.Peer-Reviewed Original ResearchMeSH KeywordsAnxiety DisordersBiasComputer SimulationEnvironmental ExposureHumansLongitudinal StudiesModels, StatisticalParticulate MatterConceptsNurses' Health Study IIError-prone exposureDiscrete outcomesLongitudinal studyMeasurement error correctionEnvironmental epidemiologistsHealth outcomesTime-varying functionCoverage probability improvementStudy designOccurrence of anxiety disordersStudy IIExposure measurementsEstimation procedureSimulation studyBias reductionAnxiety disordersExposure effectsHistory functionOutcomesChronic exposure effectsExposure historyNursesError correctionEpidemiologistsLearn-As-you-GO (LAGO) trials: optimizing treatments and preventing trial failure through ongoing learning
Bing A, Spiegelman D, Nevo D, Lok J. Learn-As-you-GO (LAGO) trials: optimizing treatments and preventing trial failure through ongoing learning. Biometrics 2025, 81: ujaf061. PMID: 40407021, PMCID: PMC12099308, DOI: 10.1093/biomtc/ujaf061.Peer-Reviewed Original ResearchConceptsIntervention packageBinary outcomesIntervention effectsConditional mean modelsOptimal intervention packagesOverall intervention effectContinuous outcomesComplex intervention packagesConfidence bandsInterval estimationImplementation trialLarge-scale intervention trialsMean modelIntervention trialsHypothesis testingInterventionStandard statistical methodsOutcomesTrialsConfidenceTheoryPower and Sample Size Calculations for Cluster Randomized Hybrid Type 2 Effectiveness‐Implementation Studies
Owen M, Curran G, Smith J, Tedla Y, Cheng C, Spiegelman D. Power and Sample Size Calculations for Cluster Randomized Hybrid Type 2 Effectiveness‐Implementation Studies. Statistics In Medicine 2025, 44: e70015. PMID: 39930740, DOI: 10.1002/sim.70015.Peer-Reviewed Original ResearchMeSH KeywordsCardiovascular DiseasesCluster AnalysisHumansModels, StatisticalRandomized Controlled Trials as TopicResearch DesignSample SizeConceptsHybrid type 2 effectiveness-implementation studySample size calculationCluster randomized trialCluster randomized designSize calculationImplementation research outcomesReduce cardiovascular diseaseIssue of multiple testingEffective outcomesImplementation outcomesCommunity interventionsControl blood pressureBinary outcomesOutcomes approachLiterature searchMultiple testingCardiovascular diseaseInterventionRandomized trialsStandard statistical methodsBlood pressureOutcomesType 2 studies
2024
Estimation and inference for causal spillover effects in egocentric-network randomized trials in the presence of network membership misclassification
Chao A, Spiegelman D, Buchanan A, Forastiere L. Estimation and inference for causal spillover effects in egocentric-network randomized trials in the presence of network membership misclassification. Biostatistics 2024, 26: kxaf009. PMID: 40159413, PMCID: PMC11955068, DOI: 10.1093/biostatistics/kxaf009.Peer-Reviewed Original ResearchMeSH KeywordsBiasCausalityHumansModels, StatisticalRandomized Controlled Trials as TopicResearch DesignConceptsHIV Prevention Trials NetworkBehavioral changesImpact of interventionsPopulation behavior changePeer-based strategiesRandomized trialsIntervention effectsBehavioral interventionsStudy designSpillover effectsInterventionTrials NetworkInvestigate finite sample propertiesAverage spillover effectFinite sample propertiesBehavioral trainingParticipantsLeverage peer influenceMisclassificationDisseminate informationInterference settingOutcomesPeer influenceSurrogate networksSample properties
2022
Is the Product Method More Efficient Than the Difference Method for Assessing Mediation?
Cheng C, Spiegelman D, Li F. Is the Product Method More Efficient Than the Difference Method for Assessing Mediation? American Journal Of Epidemiology 2022, 192: 84-92. PMID: 35921210, PMCID: PMC10144745, DOI: 10.1093/aje/kwac144.Peer-Reviewed Original ResearchMeSH KeywordsBiomedical ResearchEpidemiologic StudiesEswatiniHumansMediation AnalysisModels, StatisticalDiet- and Lifestyle‐Based Prediction Models to Estimate Cancer Recurrence and Death in Patients With Stage III Colon Cancer (CALGB 89803/Alliance)
Cheng E, Ou FS, Ma C, Spiegelman D, Zhang S, Zhou X, Bainter TM, Saltz LB, Niedzwiecki D, Mayer RJ, Whittom R, Hantel A, Benson A, Atienza D, Messino M, Kindler H, Giovannucci EL, Van Blarigan EL, Brown JC, Ng K, Gross CP, Meyerhardt JA, Fuchs CS. Diet- and Lifestyle‐Based Prediction Models to Estimate Cancer Recurrence and Death in Patients With Stage III Colon Cancer (CALGB 89803/Alliance). Journal Of Clinical Oncology 2022, 40: 740-751. PMID: 34995084, PMCID: PMC8887946, DOI: 10.1200/jco.21.01784.Peer-Reviewed Original ResearchMeSH KeywordsAgedAntineoplastic Combined Chemotherapy ProtocolsChemotherapy, AdjuvantColonic NeoplasmsDietFemaleFollow-Up StudiesHumansLife StyleMaleMiddle AgedModels, StatisticalMulticenter Studies as TopicNeoplasm Recurrence, LocalNomogramsPrognosisRandomized Controlled Trials as TopicRisk FactorsSurvival RateConceptsStage III colon cancerDisease-free survivalLifestyle factorsSelf-reported dietPathologic featuresColon cancerPathologic characteristicsMultivariable Cox proportional hazards regressionCox proportional hazards regressionAdjuvant chemotherapy trialsProportional hazards regressionPredictive survivalChemotherapy trialsDFS eventsOverall survivalSurvival prediction modelHazards regressionSurvival outcomesVisual nomogramLifestyle habitsPatient outcomesCancer recurrenceLifestyle exposuresPatientsCancer
2021
Estimating the natural indirect effect and the mediation proportion via the product method
Cheng C, Spiegelman D, Li F. Estimating the natural indirect effect and the mediation proportion via the product method. BMC Medical Research Methodology 2021, 21: 253. PMID: 34800985, PMCID: PMC8606099, DOI: 10.1186/s12874-021-01425-4.Peer-Reviewed Original ResearchConceptsInterval estimatorsApproximate estimatorExact estimatorMultivariate delta methodFinite sample performanceProduct methodNon-negligible biasBinary outcomesRare outcome assumptionExact expressionDelta methodVariance estimationEmpirical performanceEstimatorCommon data typesBootstrap approachBinary mediatorNatural indirect effectSample size
2019
On the analysis of two‐phase designs in cluster‐correlated data settings
Rivera‐Rodriguez C, Spiegelman D, Haneuse S. On the analysis of two‐phase designs in cluster‐correlated data settings. Statistics In Medicine 2019, 38: 4611-4624. PMID: 31359448, PMCID: PMC6736737, DOI: 10.1002/sim.8321.Peer-Reviewed Original ResearchConceptsSmall-sample operating characteristicsInverse probability weighting estimatorData settingClosed-form expressionTwo-phase designStatistical efficiencyComprehensive simulation studyWeighting estimatorCovariance structureSandwich estimatorInvalid inferencesValid inferencesSimulation studyCovariate dataInverse probability weightingEstimatorNaïve methodSampling designNovel analysis approachInferenceRobust sandwich estimatorAnalysis methodAnalysis approachNational antiretroviral treatment programmeCategorical risk
2017
Evaluating Public Health Interventions: 7. Let the Subject Matter Choose the Effect Measure: Ratio, Difference, or Something Else Entirely.
Spiegelman D, Khudyakov P, Wang M, Vanderweele TJ. Evaluating Public Health Interventions: 7. Let the Subject Matter Choose the Effect Measure: Ratio, Difference, or Something Else Entirely. American Journal Of Public Health 2017, 108: 73-76. PMID: 29161073, PMCID: PMC5719681, DOI: 10.2105/ajph.2017.304105.Peer-Reviewed Original ResearchMeSH KeywordsCost-Benefit AnalysisHumansModels, StatisticalOdds RatioPublic HealthQuality-Adjusted Life YearsResearch DesignRisk FactorsConceptsRisk factor distributionRisk ratioLife yearsEffect measuresDisability-adjusted life yearsIncremental cost-effectiveness ratioPopulation attributable riskQuality-adjusted life yearsCost-effectiveness ratioPublic health interventionsPublic health evaluationYears of lifeMeasure of effectRisk factorsRelative riskStudy populationRisk differenceHealth interventionsIntervention effectsAbsolute effect measuresHealth evaluationExternal generalizabilityRiskAbsolute measuresPopulation
2009
Power and sample size calculations for longitudinal studies comparing rates of change with a time‐varying exposure
Basagaña X, Spiegelman D. Power and sample size calculations for longitudinal studies comparing rates of change with a time‐varying exposure. Statistics In Medicine 2009, 29: 181-192. PMID: 19899065, PMCID: PMC3772653, DOI: 10.1002/sim.3772.Peer-Reviewed Original Research
2007
Point and interval estimates of partial population attributable risks in cohort studies: examples and software
Spiegelman D, Hertzmark E, Wand HC. Point and interval estimates of partial population attributable risks in cohort studies: examples and software. Cancer Causes & Control 2007, 18: 571-579. PMID: 17387622, DOI: 10.1007/s10552-006-0090-y.Peer-Reviewed Original ResearchConceptsCohort studyRisk factorsPartial population attributable riskNon-modifiable risk factorsSpecific exposuresPopulation attributable risk percentAttributable risk percentPopulation attributable riskBladder cancer incidenceGroups of exposureTarget populationProportion of diseaseAttributable riskDisease burdenModifiable determinantsCancer incidencePublic health researchDiseaseHealth researchExposurePopulationIncidenceProportion
2005
Correlated errors in biased surrogates: study designs and methods for measurement error correction
Spiegelman D, Zhao B, Kim J. Correlated errors in biased surrogates: study designs and methods for measurement error correction. Statistics In Medicine 2005, 24: 1657-1682. PMID: 15736283, DOI: 10.1002/sim.2055.Peer-Reviewed Original Research
2001
Predictors of airborne endotoxin in the home.
Park JH, Spiegelman DL, Gold DR, Burge HA, Milton DK. Predictors of airborne endotoxin in the home. Environmental Health Perspectives 2001, 109: 859-864. PMID: 11564624, PMCID: PMC1240416, DOI: 10.1289/ehp.01109859.Peer-Reviewed Original ResearchMeSH KeywordsAir PollutantsAir Pollution, IndoorAllergensAnimalsAnimals, DomesticAsthmaCatsDogsDustEndotoxinsEnvironmental MonitoringEpidemiological MonitoringHousingHumansHumidityHypersensitivityInfantLongitudinal StudiesMassachusettsMiceModels, StatisticalMultivariate AnalysisPredictive Value of TestsRegression AnalysisSeasonsTobacco Smoke PollutionValidation of the Gail et al. Model of Breast Cancer Risk Prediction and Implications for Chemoprevention
Rockhill B, Spiegelman D, Byrne C, Hunter D, Colditz G. Validation of the Gail et al. Model of Breast Cancer Risk Prediction and Implications for Chemoprevention. Journal Of The National Cancer Institute 2001, 93: 358-366. PMID: 11238697, DOI: 10.1093/jnci/93.5.358.Peer-Reviewed Original ResearchConceptsInvasive breast cancerGail et alRisk factor strataBreast cancerDiscriminatory accuracyHealth StudyModest discriminatory accuracyNurses' Health StudySubset of womenBreast cancer casesBreast cancer risk predictionNet health benefitCancer risk predictionTamoxifen useCancer casesPrevention optionsConcordance statisticClinical counselingCancerYoung womenWhite womenRisk estimatesWomenHealth benefitsRisk predictionSex‐specific mortality from adult T‐cell leukemia among carriers of human T‐lymphotropic virus type I
Hisada M, Okayama A, Spiegelman D, Mueller N, Stuver S. Sex‐specific mortality from adult T‐cell leukemia among carriers of human T‐lymphotropic virus type I. International Journal Of Cancer 2001, 91: 497-499. PMID: 11251972, DOI: 10.1002/1097-0215(20010215)91:4<497::aid-ijc1044>3.0.co;2-a.Peer-Reviewed Original ResearchConceptsAdult T-cell leukemiaHTLV-I carriersHuman T-lymphotropic virus type IRelative riskVirus type IT-cell leukemiaIncidence of ATLMiyazaki Cohort StudyUnadjusted relative riskAdjusted relative riskType IPerinatal infectionEarlier average ageCohort studyMale predominanceRisk factorsAverage ageInfectionMortalityNumber of personsLeukemiaEarly ageMalesFemalesSex-specific mortality
2000
Measurement error correction using validation data: a review of methods and their applicability in case-control studies
Thürigen D, Spiegelman D, Blettner M, Heuer C, Brenner H. Measurement error correction using validation data: a review of methods and their applicability in case-control studies. Statistical Methods In Medical Research 2000, 9: 447-474. PMID: 11191260, DOI: 10.1177/096228020000900504.Peer-Reviewed Original ResearchA tetranucleotide repeat polymorphism in CYP19 and breast cancer risk
Haiman C, Hankinson S, Spiegelman D, De Vivo I, Colditz G, Willett W, Speizer F, Hunter D. A tetranucleotide repeat polymorphism in CYP19 and breast cancer risk. International Journal Of Cancer 2000, 87: 204-210. PMID: 10861475, DOI: 10.1002/1097-0215(20000715)87:2<204::aid-ijc8>3.0.co;2-3.Peer-Reviewed Original ResearchConceptsBreast cancer riskHealth Study cohortCase-control studyCancer riskHormone levelsNurses' Health Study cohortBreast cancer case-control studyElevated estrogen levelsAdvanced cancer casesCancer case-control studyRepeat polymorphismTetranucleotide repeat polymorphismConversion of androgensGreater frequencyKey steroidogenic enzymesSignificant greater frequencyDistant metastasisStudy cohortEstrogen levelsCYP19 allelesBreast cancerCancer casesAllele carriersEstrone sulfateNonsignificant increase
1999
Design of Validation Studies for Estimating the Odds Ratio of Exposure–Disease Relationships When Exposure is Misclassified
Holcroft C, Spiegelman D. Design of Validation Studies for Estimating the Odds Ratio of Exposure–Disease Relationships When Exposure is Misclassified. Biometrics 1999, 55: 1193-1201. PMID: 11315067, DOI: 10.1111/j.0006-341x.1999.01193.x.Peer-Reviewed Original ResearchMeSH KeywordsBiometryBreast NeoplasmsEpidemiologic MethodsFemaleHumansLeadLogistic ModelsModels, StatisticalOdds RatioReproducibility of ResultsConceptsOdds ratioEvaluation of Old and New Tests of Heterogeneity in Epidemiologic Meta-Analysis
Takkouche B, Cadarso-Suárez C, Spiegelman D. Evaluation of Old and New Tests of Heterogeneity in Epidemiologic Meta-Analysis. American Journal Of Epidemiology 1999, 150: 206-215. PMID: 10412966, DOI: 10.1093/oxfordjournals.aje.a009981.Peer-Reviewed Original ResearchConceptsParametric bootstrap versionBootstrap versionLarge simulation studyCorrect type IStatistical powerComputational easeSimulation studyIdentification of heterogeneityHypothesis testQ statisticStudy varianceLow statistical powerNull hypothesisStatisticsPoint of viewBootstrapHomogeneity testVersionPowerDecision criteriaNew testBest choiceKey featuresEffect measuresVariance
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply