WEBVTT
1 00:00:03.845 --> 00:00:05.448 - Hello everybody welcome,
2 00:00:05.448 --> 00:00:08.150 we're gonna give it just a second for everyone to get set up
3 00:00:08.150 --> 00:00:10.150 and then we will get started here today.
4 00:00:17.870 --> 00:00:20.180 Right, it looks like most are connected to the audio,
5 00:00:20.180 --> 00:00:22.982 so I welcome you all thank you for joining us,
6 00:00:22.982 --> 00:00:25.691 my name is Becca Melnick.
7 00:00:25.691 --> 00:00:27.254 I’m the associate director of admissions,
8 00:00:27.254 --> 00:00:28.330 here at the Yale School of Public Health.
9 00:00:28.330 --> 00:00:30.610 I recognize many names, I’ve seen you all
10 00:00:30.610 --> 00:00:32.070 on events earlier this week,
11 00:00:32.070 --> 00:00:34.730 and I’ve conversed with a lot of you throughout the process
12 00:00:34.730 --> 00:00:36.962 so, thank you for joining us today,
13 00:00:36.962 --> 00:00:41.310 this session for our Executive MPH Virtual Open House,
14 00:00:41.310 --> 00:00:43.528 is focused on the Environmental Health Sciences Track,
15 00:00:43.528 --> 00:00:46.100 as hopefully many of you have seen,
16 00:00:46.100 --> 00:00:48.014 we’ve had other events throughout this week,
17 00:00:48.014 --> 00:00:51.270 a general program overview,
18 00:00:51.270 --> 00:00:54.352 sessions for other tracks specifically,
19 00:00:54.352 --> 00:00:56.520 and we’ll be having other events for financial aid careers,
20 00:00:56.520 --> 00:00:58.930 and the intensives leader in the week.
21 00:00:58.930 --> 00:01:03.010 So with that, I will turn it over to Yong Zhou,
22 00:01:03.010 --> 00:01:04.550 who’s the track coordinator,
23 00:01:04.550 --> 00:01:06.980 to talk a little bit more about our EHS Track.
24 00:01:06.980 --> 00:01:08.270 And we’ll just say that,
25 00:01:08.270 --> 00:01:10.240 we want this to be interactive and helpful for you,
so please feel free to ask questions that you have as we go.
Thank you, Becca and everyone joining us today,
so this is a brief overview
about Environmental Health Sciences Track.
That’s the first from page.
So just a little bit about myself,
My name, Yong Zhou, I’ve PhD in Molecular Biology,
currently I’m Associate Professor of Epidemiology,
in the Department of Environmental Health Sciences,
my research area is in the field of molecular cancer epidemiology.
Basically dealing with biomarker,
or social weights, environmental exposures
and the disease progression disease, CLPD outage,
so from molecular perspective,
and Almeida based the perspective.
This is my research area.
And research disease focused on cancer,
so this is my email, and cellular phone number,
we have another slide,
talking about my role in this program,
this is my contacting for
so you want me to fail sciences that become one
of the dominant themes of the 21st century
because of the growing global population
and our limited resources and the strain ecosystem.

Monetary challenges require aware

train workforce and possessed the scientific skills.

And then I think the tours to come from the emerging stress.

So we need to learn something, but again

that’s the purpose of the cost we design to

fit the requirement of these challenges.

because through important the national Institute

of environmental health sciences, and yet

as one of the major Institute

NIH and also world health organization WHO

have launched collaborating center

to investigate many environmental health science,

concerns, for example

on our children’s environmental health science

that could be impacted

by environmental exposures and the Columbia changes and the

and the human health and the indoor air pollutions

including other productions from the water

or the pollution is also so that’s the important

off the mountain fail sciences, probably.

That’s the one for the reason you, you take the front

of the house to check, but this is the three calls us.

We put together.

It’s very unique accurately for 12 calls.
So we combine to our professors their expertise to enhance the content and health of these calls us, we them with the first one. We first caused you to support your assessment. So we all exposed to different chemical, biological, physiological, environmental agents doing our daily life. But these calls were provided tours to assess environmental stressor in conquer the indoor or outdoor and occupational environment. And there’s review masters for evaluating the quantitative of the exposure data for you. Then pull the air pollution, the water contamination. So what’s the best way to assess them and how to collect the quality data for research purpose. I think these are the first the costs that’s given the concept is that a lot of diseases associated with you can support you. but this is the pure epidemiological approach. We’ve tried to find association between exposure and the disease or other Phil’s outcomes making a connection by the water tours available for exposure assessment but still then we can say the how to apply the
latest epidemiological and toxicological research
to their own work and the project.
So after this course, that's the initial part.
So we have two professors teaching.
These costs, professor Nico diesel.
She is a pro, especially the professor I would department.
So her expertise is in the field
of risk assessment and the methodology.
And also we have professor crystal plate.
Her expertise is in the chemical and environmental engineer
and she developed aware wearable Ben Reese
the ban to collect the environmental exposures
then analyze this.
I mean the deaf people could carry this again
individualize the exposure data.
So they provide both of them were providing expertise
for the methodology and the four data connecting real data
to environmental exposures.
That's the first, first cost we put together.
But if we consider the association
between exposure and the disease
so what's in the middle, that's the black box.
So the second the cost will help us to
break this black box to see what specific hazard
or exposure agents in this black box that could
help us explain the observed association
between exposure and entities.

So I learned the foundation for understanding our role of toxic cottage in public health protection was a focus on 21st century techniques and the challenges that the new technology students learn for hazard identification, but simply why be introduced to basic principles of toxicology.

If we can have a dose response mechanisms of toxicity and the standard of defense instead of a response but these all in this black box between exposure and the human diseases and then they move on to advanced topics then how we use these tools for study early life.

So Wells together to offer our professors the teachers cost professional part. And that’s another thing.

Yes, Hey, here’s the final off green chemistry.

but probably you all know what’s green chemistry.
Lastly, we build our product to use in one little friend.

Then now it's just with our environment.

W e also have our profile.

I will department here, professor I met his name was Ella.

He's the senior toxicologist.

I mean with expertise in this field.

the leading toxicologist in the field.

So both of them will provide the fundamental principles.

of the different tours that students can use.

People can use for hazard identification, but these

the second and cost be able to

upon the first one of the exposure and the disease Carnation

and the water towards can use to identify specific hazard

between exposure and the disease.

So the third cost we put together that risk assessment

and the policy, these calls were introduced the

methodology interpretation application

on the communication surrounding the use

of visit assessment in poppy house.

So students were gaining an understanding

of how toxicology information

on hotter than a dose response is incorporated.

We exposing information to predict the house risk.
for why the variety of populations and also students
the bathroom visit assessment for real world exposure issues.
So after we know about specific exposures and the know about some detailed chemical hazards or Asian that could then could expose you and

So the next job we should do is that what’s the policy we should put together for policy decision making, but again, risk management also the policy maker to make decisions. so this work gave us some idea about what information we should have put together to present to the policy maker and the involved with the English risk of management and the policy and public health policy. so we have professor Gary Ginsburg. so he’s also the director of the center for environment health in New York state department of health, who he has tons of experience with policy environmental policy, and also how to interpret the data collected the farm research from different research.
But most of the time we have to conduct a multiple
research project to confirm exposure and the disease relationship, the what information they are important for the fullest policy makers.

So these are these sweet calls us give a different perspective of how we approach environmental related to the issue.

Okay I think firstly, these days.

Okay in addition to these three courses but students can also get access to all our faculty members.

I know that they also go to site visit. You can have in-person meeting.

We saw were a faculty member, but you can always check out our website to identify the faculty with research issues or with resource areas that fit your interests, you fit.

We are, you you’re very welcome to contact them.

The research expertise of our EHS faculty. It covers a number of few if we can, some off of them.

And we are then at the end we already talked about that’s the resource area of the course instructor framework.

But in addition to those we have climate and energy impact on sales where people working on climate change and human health.
We also have faculty members with expertise in developmental orange of human diseases.

So for early life exposures are so important that as a risk predictor for later life diseases and the green chemistry, we already talk about understanding environmental health disparities.

We have also people work on novel approaches to assessing environmental exposures and early biomarkers of effect the systematic system biology approaches.

That’s why they use among seven welfare. So we’re all following faculty groups.

And also we use this tours to apply these tours in the major human diseases including cancer, heart disease and also these days than the Corona virus COVID-19.

Okay, so during the pandemic, we have a lot of experience with online teaching, but also online research but you’re well, very welcome to contact our faculty member to see whether you want to participate in their research, a specific topic or get involved in their research.

Probably we can, we can develop something for you too.
243 00:13:39.910 --> 00:13:41.710 involved in a real research setting.
244 00:13:45.580 --> 00:13:48.190 So as a track quality, neither.
245 00:13:48.190 --> 00:13:52.410 So my though is to help support attract de-
246 00:13:52.410 --> 00:13:53.860 and review, get feedback.
247 00:13:53.860 --> 00:13:56.240 Pharma student investigator, Rob, as a bridge
248 00:13:56.240 --> 00:14:00.493 between a student and teaching faculty and
we’ve
249 00:14:01.875 --> 00:14:05.330 cost evaluation, supporting instructors to im-
250 00:14:05.330 --> 00:14:07.860 prove
251 00:14:07.860 --> 00:14:12.482 in also, I can provide a student academic
252 00:14:12.482 --> 00:14:14.560 and career mentoring for them.
253 00:14:14.560 --> 00:14:19.560 If you want to know more about the specific re-
254 00:14:21.030 --> 00:14:25.240 search can help you to connect to a wildfire
255 00:14:25.240 --> 00:14:28.420 And it’s upon identification of capstone
project
256 00:14:29.521 --> 00:14:31.860 before the research all fails Easters or
257 00:14:35.888 --> 00:14:37.170 for any project you are interested, I think we
258 00:14:44.076 --> 00:14:46.568 to make the connections.
259 00:14:46.568 --> 00:14:47.668 So that very brief being sure that I’m sharing
260 00:14:47.668 --> 00:14:48.501 about you mom know how science says
261 00:14:49.810 --> 00:14:52.421 about the three courses we’ll put together
262 00:14:52.421 --> 00:14:54.720 About other results.
263 00:14:54.720 --> 00:14:59.720 Tonight is also our whole department is open
to all for you
264 00:15:00.010 --> 00:15:02.583 and about my role as the coordinator.
265 00:15:03.507 --> 00:15:04.360 Thank you.
266 00:15:04.360 --> 00:15:05.210 And any questions
267 00:15:30.800 --> 00:15:31.633 - Are there?
No, no questions at all.
This is, you know, for you all, any questions you have
about the courses, the track, the kind of combination
courses with other tracks, anything that'll be helpful.
And thank you, Reynolds are freezing the chat
feel free to use the chat or raise hand
or just to kind of turn your camera or your mic on
- This, off the slides so we could see each other.
So the question is
are there tours provided to labs where work is performed?
Not, I mean, from an emissions perspective, not really.
We have a campus tour that will be posted online
within the next probably two weeks.
That does show a little bit
of the inside of some of our labs, but there are hundreds
of faculty research projects and labs on campus.
It's hard to kind of capture them all in one sort of tour.
And unfortunately at this point, campus is not open
to external visitors, so we can't have kind of live tours
but I don't know if there's kind of another
anything else you can think of that would be helpful
for kind of tours of labs where work is performed.

Well, I know this, our professor Paul,

another test is here.

I think Paul, do you have anything to add

Or a pleasing?

Some of my apologies

I had a little trouble linking onto the zoom link.

My, but I, I just wanted to say one thing specifically

about the, the tours that as, as we transition
to increasingly opening up our, our labs, I'd be more
than happy to engage people and, and coming through our
our labs and, and trying to even do it virtually if you
if you wish to contact me directly
or through or through yarn or, or, or admissions.

So I'm always happy to do whatever we can to
give you a glimpse into the, the
the real world, real world of, of our laboratories.
There's something that I just wanted to add. If I, if I may professor Zhou, I just wanted to say
the description of the
of the program was, was really wonderful.
And the only thing I'd add
it was that the way that this program was, was built
the way that it thought through was to identify the essence of what a student would want to know would need to know the essentials of exposure, hazard risk those things that are yeah, the, the, the distillation of those key principles, those key fundamentals so that they can be applied.

And then as we said, opening up those other opportunities to interact with the wide range of faculties and resources at Yale. So that’s what it is.

It’s, it’s the essence of what you would want to know on this topic.

Okay. Thank you for that kind of continue to or additional information about the track that’s really helpful and I’m glad you could join us as well so that students can meet as many faculty members and program team members as possible. Are there any other questions at this point?

Hi.

Hi.

Can you see me?

Thank you so much for this wonderful presentation. I have a question about the first course in the track I wanted to see if it’s built
on the elementary introductory epidemiology course.

- I think there’ll be some overlap

some better concept of stay the same, right?

I mean, I think epi designed a pre-approach

EPU protocols where the similar

but the work to focused on your mental per-
spective.

So how we use these tours for this assessment

is going to be lying different epi design.

I think that they do the overlap, but again

the focus will be a little different.

Thank you so much.

So there’s another question to chat, Dr.

can you speak more about your work on green chemistry?

Sure. I’m always happy to, I, you know, I
talk so much

about green chemistry that people are usually

asking not to talk so much on green chemistry.

So I’m always happy to accept that invitation.

So for those of you who don’t know what
green chemistry is

it basically takes this concept of the substances

that make

up our society and our economy, everything

that we see touch

and feel pretty much as a chemical.

So when we think about, Oh, a chemical is

something special

specific and produced by the chemical ind-

ustry.
Now we’re surrounded by chemicals and we know chemicals have given us a tremendous amount of function, but we also know they’ve brought about a tremendous amount of hazard and risk and a negative consequence. And so what green chemistry is all about in its essence is how do you maintain all of the function while eliminating those adverse consequences. So carcinogens and neurotoxins, endocrine disruption, environmental pollutants. And so it’s all about the design and chemistry has given us while eliminating those adverse consequences. So carcinogens and neurotoxins and so we have a center for green chemistry here touches on a wide range of different applications of green chemistry and everything from energy to consumer products, cosmetics and building materials, and architecture, and on and on. So as I, as you can tell, I could go on for a while at least a whole semester about this, if, if you’d let me but I probably ought to stop there.
Any other questions

You know, as much as I said, I was going to stop

I’m going to add one or two more sentences.

So I get to co-teach the, the course on hazard.

And we think about hazard perhaps too often as just the way things are.

It’s just the nature of things, but we dive into hazard

not just understanding that things are hazardous

but why they are hazardous the underlying physical

chemical properties of what makes us substance hazardous

what makes it allowed to get into our body.

It would be in the adjusted cross

membranes caused those kinds of problems.

And we want to get that deep level understanding

so we can design new things to be different.

So that’s why understanding hazard is so rather

than just simply protecting ourselves with masks

and respirators and personal protective gear

and saying always use in a well area.

Instead, we can design things

so that they are intrinsically less hazardous.

And so that’s, that’s the perspective that we bring to

to that course and throughout the program.

I think that your work is a great example
of really the interdisciplinary perspectives you get across the program here. I think, you know, that the EHS track and your work in green chemistry really highlights how the different schools and programs at Yale crossover a lot. And you’re able to kind of bring in expertise from different areas across university and how that isn’t, you know, really, I guess, evident in our on-campus program, but still a great opportunity within the executive MPH online, that you’re still able as a student in the program to engage with experts and scholars in these really, you know, interdisciplinary areas of public health work. So we’re glad that you are a part of the track and I’m part of the program and really highlighting that true benefit of our MPH and the executive program. - Yeah, go ahead. - I was just going to say, thanks for bringing that up because that interdisciplinarity is key because the way that the school of public health, you know, coordinates, collaborates
and builds with whether it be the school of engineering
the school of architecture, the school of environment
e specially there’s so many interconnections
in order to bring about all
of those positive consequences for public health.
And that’s what this, this program really emphasizes.
Yeah. Just add to Paul’s point that the, the hardest
identification involve some basic mechanistic studies
but you can look at it, exposure assessment. They only give us association
but we do not know whether these are causal association
or just association with all the causal effect.
So the sec that’s a, but again
we shouldn’t need a good technology.
You mean high quality data to conclude those
but the second the cost, how do the identification
like the doctor and ask the surgeons that we
some biological mechanistic study
we can pinpoint what chemicals to Pacific chemical evolved
in these exposure disease association
then concreter some call.
So you fact, now we can bring this information
to policy maker, for example
one good example, the freedom there
455 00:26:25.948 --> 00:26:28.646 some contamination in the water, a certain area.
456 00:26:28.646 --> 00:26:29.720 Then we find some seeing this.
457 00:26:29.720 --> 00:26:34.370 Then just some policy maker can ask all the people
458 00:26:34.370 --> 00:26:35.560 leaving that area.
459 00:26:35.560 --> 00:26:38.374 They have to get some filter to clean up their water.
460 00:26:38.374 --> 00:26:41.851 So I think that’s the sway different perspective
461 00:26:41.851 --> 00:26:45.288 put together can help us better address
462 00:26:45.288 --> 00:26:48.500 any environmental related issues with all this.
463 00:26:48.500 --> 00:26:49.750 So this hallway we design
464 00:26:51.917 --> 00:26:53.240 I think the reason I put these three cultures together
465 00:26:56.597 --> 00:26:57.865 - That’s a great way to, to put it in.
466 00:26:57.865 --> 00:27:01.764 I would just add to that, that the philosophy of the
467 00:27:01.764 --> 00:27:05.240 of the program of the school
468 00:27:05.240 --> 00:27:08.480 of all of the professors that you’ll interact
469 00:27:08.480 --> 00:27:11.720 with is that yes, we seek to
470 00:27:11.720 --> 00:27:15.228 to deeply understand these problems deeply, rigorously
471 00:27:15.228 --> 00:27:17.324 scientifically understand these problems, but
472 00:27:17.324 --> 00:27:21.542 the only reason to deeply understand a problem is to inform
474 00:27:24.950 --> 00:27:28.180 And so how we take that deep level understanding
475 00:27:28.180 --> 00:27:31.570 and that’s what we’re teaching you is the essence
476 00:27:31.570 --> 00:27:32.680 of how to understand those problems
477 00:27:32.680 --> 00:27:36.260 in order to inform and empower public health solution.
478 00:27:36.260 --> 00:27:38.670 So I think that that’s, that’s really key
and that’s the real power of how this program was designed.

Well, I’m not seeing any other questions so I wanna thank everyone for joining us today. Thank you to our faculty members and program team for being on with us to talk a little bit more about the program.

As I mentioned we have other open house events throughout the week. Definitely join us.

Hi. Do you have a question to them? Go ahead.

Hi, I’m Tom Hayden, really excited. Just, I get excited hearing you talk about environmental health science.

So it’s, it’s a good thing. I’m curious.

I, so I’m struggling with, I really was focused on environmental health, sciences and informatics, and I’m curious for the different in the environmental health sciences track are you able to take different classes too, and I’m having a hard time with trying to figure out how to work, you know to get the most out of the experience as well as, and I’m curious for the different in the environmental health sciences track are you able to take different classes too, and I know that some, like with informatics, it’s kind of you
each one builds upon the previous one. And so it’d be weird to jump. You can’t jump into necessarily the third course because you didn’t get the prior to or it might not be as easy to follow along with the third course as if you weren’t in the previous. And so I’m curious with the EHS pro track is it possible to actually, you know, if I did the first and maybe the third or the second and the third or is it that they each, you know you need to take each one relate to get two, to do each one. I mean, if I wanted to do the third class do I need to take the previous two? - But again, my quick response is that these are three separate courses. The only independent is not just build upon another one. For example, all the tours, talk about the one us not to rely on the knowledge, but again the reason we talk about the why we putting all this together, we have scientific link the question from different angle but the artists start with independent. The so you can take from one of us or the one cause we used to get management and policy but then you kept some question.
You mind the, how we get this data. But again, that answer by first of course, right how we do this first design. But if we want to know about what is the specific chemical compound what tools people use to ping pong specific aging in these exposure is this association but that’s the second cause of what a cover. So I think you can take, take this in different orders in random order, but based on your schedule, but again the underlying knowledge underlying link between this. But again, that’s the hallway. They adjust the crushing from different perspective but again, you can take the sort of the one first to match. They’re all second, I’m gonna take the second one. I don’t think it doesn’t any, any requirement. You have to take these in this order, but Paul, you, you, you you have any, any other suggestions? Well, let me just say there there is and it’s actually to be determined for environmental health sciences. There will be a specific order of the courses but I think your question Tom has to do with the knowledge and skills that one would need
as a prerequisite to take a course.
So in the case of VHS
I think it’s fair to say as professors
you said that, you know, you can take the third course
in the sequence and benefit fully
without taking the first two for this track.
If you’re interested in epidemiology, I would say, you know
if you’re going to be taking the third course
in that sequence, advanced analytic methods
and epi
if you didn’t have a very, very strong foundation
in epidemiology and basic analytic methods
it would be a very challenging experience for you.
So the question of what you need as a prerequisite
you know, as has been said, EHS, wouldn’t be one of those
in terms of physically, when you would take a course
there will be a predefined sequencing
of when you will be taking the courses.
Now, one of the interesting things that I need to think
about is that say you’re interested
in another course not to take it for credit or even audited
but just to sort of peek in and view some
of the lectures just as sort of a one-off experience.
You know, I think that’s a good question
that you didn’t ask, but that one that I need to answer.

So I will actually think about that and consult with my colleagues because I think there would be a benefit to sort of having a key that you can unlock and you just watch a random video for your own interest in edification, not necessarily for credit or for the program sequencing.

That sounds great.

That’s the question that I wish I asked that was, yeah thank you.

I don’t necessarily have a question. I just wanted to say a few things I wanted to thank you for this presentation.

I was coming in, definitely with applying with settled on epidemiology track and I was having a hard time being overwhelmed with all these amazing options within the other three tracks. And I think now visiting these sort of informational sessions gave me a lot of clarity on how I want to supplement my education and my chosen track and epidemiology.
And when it comes to new environmental health and the effects of environmental pollution pollutants on human health is rings very close to me because I was born slightly a few years before Chernobyl explosion in on the border of Ukraine and Belarus. I grew up in poster novel environment and it was, I mean everything was awful lives were governed by the often mass of the Chernobyl catastrophe. My family had resources to move away temporarily but we still had to come back because not all my family could move away. So, and I could, I kept coming back year after year and seeing sort of the damages. And even though it’s almost been 40 years I think many substances have different half-life. So the scary part is that even 50 years there will be another some other element will be radioactive. And many of my friends, even though they Mo many of them moved away a relocated thyroid cancer followed down some got diagnosed here, you know years and years, decades after exposure. And I think it will be a huge loss for me not to take a class, you know
in this track and to get a better understanding on the molecular level potentially. And, and yeah, I guess, to work with all of you. And I learned from you and learn from your expertise in this field. Well, if I could just say thank you so much for sharing that because one of the things that I just mentioned is that in classes that I teach that I teach undergraduates I also teach undergraduates the teaching about Chernobyl teaching, about Bhopal teaching about these things to them is it is a history lesson and that they have gotten so many of the lessons that we need to know, and we need to build into what we do that it’s really important to use these these events, to understand you know, hazard risk, environmental exposures. I, I happen to have done a time in the government with president Obama and was in charge of the response to focus Shima the focus Shima meltdown. And so these things are very much high in our consciousness when we discuss these important environmental health issues.
So thank you.
- Thank you.
It’s amazing how it, I mean, how it
how it is a history lesson, but it’s, it’s
it’s still a reality for the populations
even though it’s just not on our minds any-
more.
Yeah. I mean, I think the initially early
in early years we had radiation safety class
where
we had to put gas masks on.
And, but even then sort of for a really free
really
really young students as we were really young
students
it was already a laughing matter, you know
because we were all laughing about, you know
just basically how we
how we look funny in this gas masks, right.
More than what is protecting us from.
And, and let’s, let’s be honest about it
the young generation of environmentalist.
So, so concerned about how we respond
to climate change
that there’ll be happy to say, well
nuclear is the solution, and let’s just go full
into nuclear
and just say, let’s be thoughtful about these
things.
So having to provide that product context
and
letting people know those, those impor-
tant issues
675 00:38:11.420 --> 00:38:12.970 I’m so glad that you raised
676 00:38:14.109 --> 00:38:15.333 that because it’s important to be thoughtful.
677 00:38:18.470 --> 00:38:19.680 - And I think, I mean
678 00:38:19.680 --> 00:38:23.050 in terms of Chernobyl is definitely could have
been
679 00:38:23.050 --> 00:38:24.980 we could have learned a lot more
680 00:38:24.980 --> 00:38:27.830 than we are learning from it now.
681 00:38:27.830 --> 00:38:30.370 If the government was transparent, because
682 00:38:30.370 --> 00:38:35.370 I think the reason why people were forced to
forget as soon
683 00:38:36.229 --> 00:38:39.649 as possible by not providing by
684 00:38:39.649 --> 00:38:42.820 by hiding the records, medical records, wow.
685 00:38:42.820 --> 00:38:47.170 Hundreds of thousands of medical records
disappearing.
686 00:38:47.170 --> 00:38:51.920 And so that not, not so that the, that couldn’t
be being
687 00:38:52.987 --> 00:38:57.987 between a clear link between the environmen-
tal exposure
688 00:38:58.750 --> 00:39:02.258 and certain cancers, for instance
689 00:39:02.258 --> 00:39:03.840 or a certain birth defects.
690 00:39:03.840 --> 00:39:08.390 Definitely. I mean, even, I think it took a few
days to
691 00:39:08.390 --> 00:39:11.129 even tell people we were playing outside.
692 00:39:11.129 --> 00:39:14.840 It rained in many places
693 00:39:14.840 --> 00:39:19.640 depending on where winds got went, and then
the, they
694 00:39:19.640 --> 00:39:22.923 it was not the catastrophe wasn’t announced
for a few days.
695 00:39:34.760 --> 00:39:38.973 - Any other last questions, comments, topics
of discussion.
696 00:39:44.340 --> 00:39:46.414 All right, thank you again to everyone.
697 00:39:46.414 --> 00:39:47.247 So much.
698 00:39:47.247 --> 00:39:49.395 We hope to connect with you
in the coming weeks as always, we’re here to help.

So don’t hesitate at all to reach out if you have questions, comments, concerns really anything you want to talk about in regards to the program.

We are always here.

I know almost all of you already, I’ve communicated with you have my contact information, but our office of admissions general contact is a great place to go.

and we can help direct you anywhere as needed.

So thank you all again so much for your time and we hope you have a great rest of the afternoon.

Thank everyone - Thank you.