WEBVTT
NOTE duration:"00:56:08.9170000"
NOTE language:en-us
NOTE Confidence: 0.8496607
00:00:00.000 --> 00:00:01.197 So welcome everyone,
NOTE Confidence: 0.8496607
00:00:01.197 --> 00:00:03.990 it is my great pleasure to introduce
NOTE Confidence: 0.8496607
00:00:04.067 --> 00:00:05.887 our seminar speaker today,
NOTE Confidence: 0.8496607
00:00:05.890 --> 00:00:07.279 Doctor Elizabeth Tipton.
NOTE Confidence: 0.8496607
00:00:07.279 --> 00:00:09.131 She’s an associate professor
NOTE Confidence: 0.8496607
00:00:09.131 --> 00:00:11.846 and the Co director of the
NOTE Confidence: 0.8496607
00:00:11.846 --> 00:00:13.936 statistics or evidence based policy
NOTE Confidence: 0.8496607
00:00:13.936 --> 00:00:16.274 and practice Center and a faculty
NOTE Confidence: 0.8496607
00:00:18.428 --> 00:00:19.588 fellow in the Institute for Policy
NOTE Confidence: 0.8496607
00:00:18.430 --> 00:00:20.278 Research at Northwestern University.
NOTE Confidence: 0.8496607
00:00:20.278 --> 00:00:22.588 Unducted sentence research focuses on
NOTE Confidence: 0.8496607
00:00:22.588 --> 00:00:24.917 the design and analysis of randomized
NOTE Confidence: 0.8496607
00:00:24.917 --> 00:00:27.773 experiments with a focus on issues for
NOTE Confidence: 0.8496607
00:00:27.773 --> 00:00:29.745 external validity and generalizability,
as well as meta analysis with the focus on dependent effect sizes.

Um, today she’s going to share with us how to design randomized experiments to better understand treatment effects.

Head virginity welcome best.

The floor is yours.

Thank you.

I’m very excited to be here today. I really wish I hear I wasn’t talking about my office slash closet and was actually with you guys in person and this is my first time doing slides where I’m on the slide so it’s a little.
I don’t know what is the protocol for questions. How do you guys? How do you usually set this up? Do people what’s the norm? Do you guys usually up jump in with questions or save them for the end? So I think as you prefer, we can do either way. OK, I’m just I won’t be very good at checking the chat, so if there’s a question if somebody can just speak up that would be will do that. I’ll do that on the chat. OK, thank you. So I just want to set out background for what I’m talking about today, which is I’m talking about randomized
NOTE Confidence: 0.85336065
00:01:34.310 --> 00:01:36.417 trials an I realized that in a
NOTE Confidence: 0.85336065
00:01:36.417 --> 00:01:38.740 Biostatistics Department, you guys.
NOTE Confidence: 0.85336065
00:01:38.740 --> 00:01:40.900 The idea that randomized trials are
NOTE Confidence: 0.85336065
00:01:40.900 --> 00:01:43.046 common is probably almost absurdly basic
NOTE Confidence: 0.85336065
00:01:43.046 --> 00:01:45.293 for the world that you operate in,
NOTE Confidence: 0.85336065
00:01:45.300 --> 00:01:47.452 but I do a lot of my statistical
NOTE Confidence: 0.85336065
00:01:47.452 --> 00:01:49.816 work in the areas of education and
NOTE Confidence: 0.85336065
00:01:49.816 --> 00:01:52.490 psychology and kind of in the field
NOTE Confidence: 0.85336065
00:01:52.490 --> 00:01:54.610 experiments world and those areas.
NOTE Confidence: 0.85336065
00:01:54.610 --> 00:01:55.990 Randomized trials have only
NOTE Confidence: 0.85336065
00:01:55.990 --> 00:01:57.025 become common really,
NOTE Confidence: 0.85336065
00:01:57.030 --> 00:02:00.420 I’d say the last 20 years.
NOTE Confidence: 0.85336065
00:02:01.420 --> 00:02:02.690 So almost 20 years ago,
NOTE Confidence: 0.85336065
00:02:02.690 --> 00:02:05.060 the Institute for Education Sciences
NOTE Confidence: 0.85336065
00:02:05.060 --> 00:02:07.913 was founded in the Department of
NOTE Confidence: 0.85336065
Education in the US government, and that has funded almost 500 efficacy and effectiveness trials and education. Previous to that there were very few of these. There’s also an increasing number of nudge experiments in social psychology. I know that there’s a lot of rain in mice trials occurring in developing countries, so this is late in parallel, maybe 2. In public health, they’re being randomized trials there, so I’m just sort of pointing out
00:02:46.499 --> 00:02:48.180 that these are becoming increasingly common for policy decisions,
00:02:48.180 --> 00:02:49.936 not just individual decisions.
00:02:49.940 --> 00:02:52.588 But the trials as there as they are designed currently are not necessarily ideal in the sense that they are not as big as we would like them to be.
00:03:00.479 --> 00:03:03.241 In order to be able to really explore the data well, there often in, you know, sort of somewhat small samples of clusters in the kind of education world that I work in it. They’re very often just simple to arm designs 50/50 treatment control.
I much less common to see things like step wedge or smart designs, so those are trickling in, I think. And the goal of these is often to get into some things like clearing House of some places so that policy making decision makers can use the information from the trials to make decisions. But the problem which is the focus of my talk is that there very often been taking place in samples that are purely of convenience, which makes thinking about generalizability and heterogeneity rather difficult.
effects vary across individuals or they vary across clusters in some way, then it’s pretty straightforward to see as a group of statisticians here that the average treatment effect you would get in the population. Is probably not exactly the same thing as the average treatment effect in the sample, and that these could be quite different if treatment effects vary a lot aniff depending upon how the sample is selected. So there has been an increasing amount of work in this area. There’s a couple of papers I think that are particularly helpful if there’s
a paper in education where they’re looking at bias from non random treats. Non random treatment assignment or they show that the bias of external validity is on the same order as internal validity bias and so to do so they sort of leverage and natural experiment with a randomized trial to look at this. And that’s worked by Bell, Olson, Oregon, Stewart. There’s also work showing that. In education and the kinds of schools and school districts that take part in randomized trials are different than the populations of various populations.
At something like the Institute of Education Sciences might be interested in, so I have a paper out with Jessica Spy, Brooke Ann are students looking at 37 randomized trials and the samples of schools taking part in those studies and comparing them to various populations of schools. In the US. There’s also work hidden behind me. By Liz Stewart. San colleagues looking at school districts and a couple of other papers as well, and these find fairly consistent things. For example,
that large school districts are overrepresented in research. Relative to the size of districts in the US. There's been also a lot of work in this area of generalizability and post hoc corrections. I started into this work looking at using post stratification as a way of estimating a population average treatment effect from a sample. There's also been work using inverse probability weighting, maximum entropy weighting bounding approaches. There have been some approaches that focus on little,
so I’m thinking like. Here’s the paper and Stuart San Green. I think that does that, so there’s been like a kind of a flurry of method development. I think here in this area of thinking you know, how do I actually estimate this? If I have population data of different forms and I have sample data of different forms, how can I actually estimate a population average treatment effect? But when I first started doing this work, I realized in a series of examples that I was working on that the
The effectiveness of these methods is often severely limited in practice because of undercoverage and what I mean is that it can't. If it turns out that your population has a part of the population that's just not represented in the trial, there's really not much statistical magic you can do. You can make some assumptions, but you can't really re wait something that doesn't exist, and the. It's it's really a reflection of lack of positive ITI in the study. Yes, exactly thanks. Yeah exactly. And yeah, I'm just using survey
NOTE Confidence: 0.8677029
00:07:21.338 --> 00:07:23.180 sampling language for the same thing.
NOTE Confidence: 0.8677029
00:07:23.180 --> 00:07:24.720 That’s right, yeah, and so.
NOTE Confidence: 0.8677029
00:07:24.720 --> 00:07:26.869 And that’s the lack of positive ITI
NOTE Confidence: 0.8677029
00:07:26.869 --> 00:07:28.535 often arises because people aren’t
NOTE Confidence: 0.8677029
00:07:28.535 --> 00:07:30.605 thinking about what the population is
NOTE Confidence: 0.8677029
00:07:30.605 --> 00:07:32.638 in advanced and so it’s very tricky
NOTE Confidence: 0.8677029
00:07:32.638 --> 00:07:34.550 for them after the fact to generalize,
NOTE Confidence: 0.8677029
00:07:34.550 --> 00:07:36.410 because it turns out that maybe
NOTE Confidence: 0.8677029
00:07:36.410 --> 00:07:38.249 this what I as analyst him now
NOTE Confidence: 0.8677029
00:07:38.249 --> 00:07:40.284 trying to think of as the population
NOTE Confidence: 0.8677029
00:07:40.284 --> 00:07:41.908 isn’t exactly the population,
NOTE Confidence: 0.8677029
00:07:41.908 --> 00:07:43.905 but it’s very hard for people to
NOTE Confidence: 0.8677029
00:07:43.905 --> 00:07:45.589 articulate what the population is,
NOTE Confidence: 0.8677029
00:07:45.590 --> 00:07:48.810 and so spent a lot of time just trying to.
NOTE Confidence: 0.8677029
00:07:48.810 --> 00:07:50.826 You’re out what the population actually is,
and if that’s population is meaningful, as if that’s a population that even matters. So I realized I pivoted a bit. I realized that you could do a lot of this with statistics, but you were going to be limited if you didn’t design better trials. And so that’s allowed me to think. Well, why don’t we just start? The beginning and do this do a better job this so why? What have we started at the beginning of our studies by asking what the target population of the intervention was thinking about inclusion and exclusion criteria,
I think it helped. This probably matters even more with like comorbidities and you know. I like rolling out people. You’re doing a study on depression, but you rule out people with anxiety, and that’s like a big problem for the interpretation since they were highly related to each other. This is true in education as well. So like, what are the inclusion exclusion criteria for your trial and how might that affect where you can generalize? And then also thinking about
background characteristics and contextual variables that might moderate the intervention’s effect and the tricky part here is, there’s a little bit of a circularity which I’m going to keep coming back to in what I’m talking about, which is in order to know these, you know, we don’t know what these are in advance, we don’t have a lot of knowledge generated to date about what these variables are, because studies have not been designed to estimate or test hypothesis about moderation, and so instead we have to sort of think...
through what we think might matter.

Using, you know, not a great source of knowledge here, but the idea is that you sort of take all of this information and then you use this to create to use sampling methods to actually design recruitment procedures like using stratified sampling. Figuring out if you should know within Strata, using balanced sampling or random sampling and thinking about sort of ways in which you can increase the
coverage so you can have positive

NOTE Confidence: 0.881084

ITI for the whole target population,

NOTE Confidence: 0.881084

so that when you do you know.

NOTE Confidence: 0.881084

When you do need to make adjustments

NOTE Confidence: 0.881084

at the end of your trial using

NOTE Confidence: 0.881084

these statistical methods,

NOTE Confidence: 0.881084

they are in a realm in which

NOTE Confidence: 0.881084

they can perform well.

NOTE Confidence: 0.8562651

This this sort of lad me to thinking about

NOTE Confidence: 0.8562651

tools for general for generalization,

NOTE Confidence: 0.8562651

and so I just want to highlight this

NOTE Confidence: 0.8562651

because I think this is a good strategy

NOTE Confidence: 0.8562651

for methods people to think about.

NOTE Confidence: 0.8562651

So I I thought will nobody is going to do

NOTE Confidence: 0.8562651

what I’m telling them to do if I don’t

NOTE Confidence: 0.8562651

build a tool because the kind of people.
Clan randomized trials, at least in my domain, don’t often have statisticians ready at the ready to work with them on things, and they are often writing grant proposals before they’ve got funding, and so it’s very possible that they’re not going to think about generalization or or have the training or tools to do it so. I got a grant from the Spencer Foundation and then I’ve had follow up money from the Institute of Education sciences to build this tool called the Generalize are that uses some basic design principles standalone.
It's got.

It's very focused on the user experience and it in the background has the Common Core of data which is. An annual census of the public schools in the US so that the data is already been cleaned and set up. We're adding in right now the iPads data, which is higher Ed data in the US and so the idea is somebody could go in and walk through inclusion exclusion criteria identified moderate ors... It would build you stratified recruitment plan in less than an hour. You could leave with a list of all the schools and start being able
to recruit with the.

Great, I've had this going since 2015 and it was very slow going for awhile. This is sort of I just realized this year that I could actually extract a lot of user data and So what you can see here is actually it was slow going and I had some early adopters. These are people that would be star users, so many of them are planning randomized trials, but there was actually a very big jump that occur this summer and that's based on this jump.

I actually started digging through
things and realized that.

Institute of Education Sciences that actually enacted requirements for generalizability.

In their request for proposals, and so you can see that what I already always speculated, which is that funders really drive change. So once funders said you need to pay attention to generalizability, people actually started paying attention to generalizability in their proposals.

OK, so this I just wanted to give you all of this background as a way of explaining sort of my like coming from the in heterogeneity and how I'm
thinking about this.

Um?

So everything I’ve talked about is sort of averaging over hedge and 80 when we talk about analyze.

Estimate an average treatment effect for a population,

assuming that there’s variation of effects and we’re averaging over those.

But to average over those requires that we know something about how treatment affects very and very often,

and I would say this is the in general we don’t,

and the reason that we don’t have a
great handle on this is because sample size and sample sizes in randomized trials. I've been very focused on the after treatment effect. Moderators have only become more of a focus, at least in education. More recently, and I think that’s true in psychology and related areas as well. And they are often more like exploratory analysis at the end, so you end up with these problems where moderator effects don’t get replicated and they don’t get replicated because there was. You know,
who knows how many statistical tests conducted in order to find those moderators. So they're not very stable, and we don't really necessarily understand or their underpowered deeply underpowered like you just have a very homogeneous sample. And so how are you going to find a treatment effect variation if there's not much variation in your sample to start with, so they're often an afterthought, but I what I noticed overtime is that as generalizability has become something people are paying attention to,
people are also starting to pay

attention to the idea that you
could predict treatment effects,
or that you could identify subgroup
effects and that this might
be very useful information.
Which led me to start thinking about
how you would design trials for this.
So what I’m going to,
what I’m leading up to is talking
about designing trials to think
about heterogeneity.
So I’m just going to start with
like a little
bit of a background here.
So we’re going to assume that you’ve got.
I’m assuming we’ve got units which are usually here. Let’s say students insights which might be schools, and I’m doing a randomized trial, and I’ve got these potential outcomes. And so we’ve got both an average and intercept in these, and we’ve also got some sort of fixed variation that we can explain. And then we have this other parts that are not affected by the treatment. We’ve got some site level and individual residuals and some idiosyncratic errors. But what we’re interested in
really is in these these moderate yrs of treatment effects, and so you could say that Delta is the difference in averages. I’m assuming these are centered variables, so this is nicely the difference in averages and that the vector Delta is the difference between these effects of the treatment and then under treatment and under control. A lot of so as you have to think about interpretability here of what I mean by Delta. By this by these deltas and how to standardize because we wanted to talk about these,
they need to have a mean of 0, but also in order to talk about treatment effects. Sort of done in general for developing things like power, we often standardize them so often we have effect sizes for the average treatment effect, their standardized in relation to the variation in the sample and the population. And so here I’m going to sort of say we what we need to do is we need to standardize the covariates and we need to standardize the.
covariates in relation to the population standard deviation. This might not seem like this is like a radical statement, but if you look into the power analysis literature on how to conduct power analysis for moderate are tests, they are typically standardizing in relation to the sample standard deviation, and in doing so, it makes it impossible to see how your sample actually how you choose your sample might matter. Isibaya standardizing by this fixed value by the population, you’ve identified a population,
and now we're standardizing by that population standard deviation. That will make the role that the sample plays here much more clear. OK, so the fact that we randomized to treatment and control allows us to estimate these dealt these Spectre Delta using some generalized least squares of some sort, and I'm being a little big here because I'm trying to encapsulate cluster randomized randomized block individual randomizer, all like versions of this.
OK, so I can do so, I can separate. These are at additive or rather subtractive. I guess the treatment and the control their step. You can separate them. And and through this I can think about statistical power, and for each of these moderador effects. And so, one way you can do that is through the minimum detectable effect size difference. I don’t know how common this is used in the sort of Biostats world, but it’s a pretty common metric that’s used in cluster randomized trials in.
The world I work in, and so it's nice because it's sort of easily interpretable, so this is the smallest affect size that you could for a for a given Alpha level which is affecting this. That's like the critical value. This is sort of the smallest true effect that you could detect with the power that you with like 80% power for example. And so this is like a general form for this, So what I'm showing is that its function.
I don’t know.

I’m just going to involve a lot of never mind,

so it’s a function of the variation in the population in that covariate.

It’s also a function of S, which is you could think of as the sort of covariance matrix of the X is in the sample,

and then it’s a function of N, which is the sample size per cluster. I’m assuming it’s constant here.

J is the number of clusters and P is the proportion in treatment. So that is Sigma XK squared? Is?
The population SD of effect modifier or the population variance effect modifier? Is the population variance moderate or modifier? But then your square rooting it so it’s going to be gradual scale. OK, so just to give you a couple of special cases where you can sort of parse out some things. There’s been previous work. I meant to include a citation here by Jessica Spy, Brooke and colleagues. That’s looking at power for moderate are tests. And so here’s 2 cases we have.
Site lab, site level, moderate yrs and individual level moderate yrs and.

I’m taking basically what they’ve got, but re tweaking part of it.

Because I’m factoring out this Sigma squared and noting that you can actually pull out this thing called RXK at the front and the RXK is this ratio of the standard deviation of the covariate in the sample compared to the standard deviation of the covariate in the population.

And so what you can see here is by doing that you by rewriting it. This way you can see that our XK is
having just as much of an effect on statistical power as things like the square root of N or the square root of P. These other parameters that most power analysis has spent has focused on, and that’s true. You know, in any of these designs. Love seeing it in any of these designs. RX shows up. OK, so if RX is something that matters for power, a question will be well. What are people doing in practice right now right? So maybe maybe people are choosing fairly heterogeneous samples,
and So what I’ve got here is 19.

This is 19 randomized trials in education that we extracted.

So these are box plots of values across each of these 19, and for each of them I’ve calculated for holding like the US population of school.

So this is like the US population of let’s say elementary schools.

I’m looking at the ratio of this moderate are in the sample in these studies to the ratio of that to that standard deviation in the population OK, and then I’m looking at boxplots of this and what you can see like do this,
00:21:00.400 --> 00:21:00.737 don’t?

00:21:00.737 --> 00:21:03.433 OK, what you can see here is that

00:21:03.433 --> 00:21:05.230 the bar at the bottom.

00:21:05.230 --> 00:21:08.020 Can you see my cursor?

00:21:08.020 --> 00:21:10.369 Can’t tell if you guys can see my curse.

00:21:10.631 --> 00:21:11.936 you can’t see my cursor.

00:21:11.940 --> 00:21:12.182 OK,

00:21:12.182 --> 00:21:14.360 so the bar at the bottom there’s an R

00:21:14.425 --> 00:21:16.711 X = sqrt 1/2 and then there’s a line

00:21:16.711 --> 00:21:18.974 across the top that’s like a dashed one.

00:21:18.980 --> 00:21:21.570 That’s the R X = sqrt 2.

00:21:21.570 --> 00:21:21.885 OK,

00:21:21.885 --> 00:21:24.090 and so you can see that most

00:21:24.090 --> 00:21:26.298 studies are actually below there,
00:21:26.300 --> 00:21:28.490 less heterogeneous than the population there.
NOTE Confidence: 0.851218459999999

00:21:28.490 --> 00:21:30.310 Below this line for one,
NOTE Confidence: 0.851218459999999

00:21:30.310 --> 00:21:32.392 and they’re actually far less heterogeneous
NOTE Confidence: 0.851218459999999

00:21:32.392 --> 00:21:35.040 than the than the population there are.
NOTE Confidence: 0.851218459999999

00:21:35.040 --> 00:21:35.403 Actually.
NOTE Confidence: 0.851218459999999

00:21:35.403 --> 00:21:37.944 If you look at these median values,
NOTE Confidence: 0.851218459999999

00:21:37.950 --> 00:21:40.128 many of them are closed 2.5,
NOTE Confidence: 0.851218459999999

00:21:40.130 --> 00:21:42.754 so they are about 1/4 of the variation
NOTE Confidence: 0.851218459999999

00:21:42.754 --> 00:21:45.227 as we’re seeing in the population.
NOTE Confidence: 0.851218459999999

00:21:45.230 --> 00:21:49.054 So this gives you a sense that if.
NOTE Confidence: 0.851218459999999

00:21:49.060 --> 00:21:50.164 That there’s, uh,
NOTE Confidence: 0.851218459999999

00:21:50.164 --> 00:21:52.040 an opportunity to improve, right?
NOTE Confidence: 0.851218459999999

00:21:52.040 --> 00:21:55.240 Like I could increase power not just by
NOTE Confidence: 0.851218459999999

00:21:55.240 --> 00:21:57.748 increasing my sample size or increasing.
NOTE Confidence: 0.851218459999999

00:21:57.750 --> 00:21:59.160 My sample size in schools or
NOTE Confidence: 0.851218459999999

00:21:59.160 --> 00:22:01.093 my sample size of the number of
schools which are pretty expensive,
but I could also increase my power by
changing the kinds of samples that I select.
And so that’s where these numbers came from.
They should have gone to slightly different order.
So the main point is that design sensitivity, the way we think,
whether that statistical power or standard errors or whatever framework
that there this is proportional in some way to this RX value that we can
improve our design sensitivity by choosing a more heterogeneous sample.
And so funny, I must have like put
00:22:34.042 --> 00:22:36.128 this in here twice on accident.
NOTE Confidence: 0.8691194
00:22:36.130 --> 00:22:38.097 So this is the same thing but
NOTE Confidence: 0.8691194
00:22:38.097 --> 00:22:39.769 with a line through it.
NOTE Confidence: 0.8691194
00:22:39.770 --> 00:22:42.050 OK so once you have that insight
NOTE Confidence: 0.8691194
00:22:42.050 --> 00:22:43.100 that heterogeneity matters,
NOTE Confidence: 0.8691194
00:22:43.100 --> 00:22:44.505 that it’s actually something that
NOTE Confidence: 0.8691194
00:22:44.505 --> 00:22:46.554 we can include in our power analysis
NOTE Confidence: 0.8691194
00:22:46.554 --> 00:22:48.598 and that is something that is not
NOTE Confidence: 0.8691194
NOTE Confidence: 0.8691194
00:22:50.070 --> 00:22:52.212 Then we can start thinking about how
NOTE Confidence: 0.8691194
00:22:52.212 --> 00:22:54.419 we might plan studies differently.
NOTE Confidence: 0.8691194
00:22:54.420 --> 00:22:55.518 OK, so if.
NOTE Confidence: 0.8691194
00:22:55.518 --> 00:22:58.080 So how can we improve statistical power?
NOTE Confidence: 0.8691194
00:22:58.080 --> 00:22:58.379 Well,
NOTE Confidence: 0.8691194
00:22:58.379 --> 00:23:01.070 a lot of the literature as I was saying,
NOTE Confidence: 0.8691194
00:23:01.070 --> 00:23:02.774 is focused on improving power by
increasing sample size or instead.

But what I'm arguing here is that you could increase instead this ratio. You could increase the variation in your sample choosing more heterogeneous sample annual have more statistical power for test of heterogeneity of moderators, and So what would you do with this? It would mean you know purposefully choosing sites that were more extreme, it might end, and that's easy enough to do in one variable. And I'm going to talk a little bit about how to do that with multiple variables.
So with a simple,

let’s just say we had one single continuous.

Moderate are like this is a normal

distance normally distributed.

This theory would tell us that we

should choose half of our sample.

We would choose half of our sample

from the upper and lower tails were

actually getting an RX of sqrt 2.

This is actually a rather large,

so this is going to create a much

more homogeneous heterogeneous sample,

thus increasing our statistical power

because it’s more heterogeneous than the.
In the population.

Similarly, if we had two correlated normal variables,

when we this is, you know,

we could imagine getting the corners of this.

These are all principles, by the way,

straight up from experimental design.

If you think if you think about it,

there are principles from like 2.

You know two factor studies or multi factor studies where you’re manipulating and instead I’m just saying instead of manipulating these factors

were now measuring these factors.

Someplace you could choose them
00:24:33.980 --> 00:24:35.550 to be extreme design points.
NOTE Confidence: 0.8697402
00:24:35.550 --> 00:24:37.434 It gets a little harder once
NOTE Confidence: 0.8697402
00:24:37.434 --> 00:24:38.376 things become correlated,
NOTE Confidence: 0.8697402
00:24:38.380 --> 00:24:39.950 so when they become correlated,
NOTE Confidence: 0.8697402
00:24:39.950 --> 00:24:41.868 I don’t have as much sample available
NOTE Confidence: 0.8697402
00:24:41.868 --> 00:24:43.816 to me because there’s just fewer
NOTE Confidence: 0.8697402
00:24:43.816 --> 00:24:45.596 population units in those corners,
NOTE Confidence: 0.8697402
00:24:45.600 --> 00:24:47.340 and so it’s going to become
NOTE Confidence: 0.8697402
00:24:47.340 --> 00:24:49.370 increasingly hard as I add variables,
NOTE Confidence: 0.8697402
00:24:49.370 --> 00:24:51.589 it might become harder and harder in
NOTE Confidence: 0.8697402
00:24:51.589 --> 00:24:53.800 order to figure out what these units
NOTE Confidence: 0.8697402
00:24:53.800 --> 00:24:55.960 are that I could be sampling from.
NOTE Confidence: 0.88043493
00:25:01.780 --> 00:25:03.660 So I started thinking about
NOTE Confidence: 0.88043493
00:25:03.660 --> 00:25:05.540 how you would do this,
NOTE Confidence: 0.88043493
00:25:05.540 --> 00:25:07.899 and I realized that there is actually
NOTE Confidence: 0.88043493
00:25:07.899 --> 00:25:10.690 a literature on this in the world
sort of industrial experiments, and industrial experiments, and in psychology people again are thinking about multi factor studies. So they’re thinking about things you could better in the experimenters control. But we could instead bout sampling in the same as the same kind of thing. Except that we don’t have control over manipulating them. We can find these units and as an alternative approach, so one of the things we want to do is we want to make sure that we observe the full range of.
covariate values in the population, so it requires us to actually think, you know, explore the population data and make sure that we can understand what that range of values is. We might need to think carefully about moderators that are highly correlated. It can be very hard to alias these effects, so if you have two highly correlated moderators I think about that. I have two highly correlated moderators like this. If I want to estimate and understand moderators of X, if I want to explore X&Z and
these are highly correlated,
I’m going to really need to make sure
I have those off diagonals that are
kind of more rare in order to help me
separate these effects and understand
the unique contribution of each.
The other is that if we might
have many potential moderators
have many potential moderators
that we’re interested in,
and so we’re going to have to
anticipate this in advance and think
carefully about sort of compromises,
we might need to make here.
But also think very carefully,
like we’re not going to be able to expand
this study to have a much bigger sample.

So a lot of what I’m trying to operate under the constraint here is, let’s not change the sample size if we don’t change the sample size, but we instead change the height types of units in our study, how much better can we do?

This leads to a principle found in response surface models called D optimality and so AD optimal design. This is work from the 40s and 60s. A lot of work here by Walt Kiefer, and a lot of people in
The idea is that you can instead focus on the generalized variance an you want to minimize the generalized variance, which is the determinant. So D is for determinant.

And so the design that meets this criteria is one that also conveniently minimizes the maximum variance of any predicted outcome based upon these covariates.

So this is great if what you’re headed for is trying to make predict individual treatment effects or site specific treatment effects.
The nice thing about a method that’s been around for a while is that there’s been algorithms developed for doing this. Better out Federov win algorithm is widely used and variations of it and that these are package that there are like statistics package already available that do this. So in our there’s something called the ALG design package that is set up to actually work through this. So designs that we know are optimal. In other contexts. You know like our designs like Latin squares, designs etc all become special cases of this.
So this is a much more general framework that doesn’t require as many assumptions. OK, so once you start down this path you realize too that there are some tradeoffs here, so we have. You can easily imagine that the design that is optimal for an average treatment effect, which might be a representative sample. That sort of like a miniature of the population on covariates is likely not optimal for some of these standardized effect size differences where we might need to oversample in order to estimate, and so there’s another.
Benefit of this approach, which is that you can focus on augmentation approach and what that means is you can actually say using these algorithms better billable 30 sites or already for I’ve already got 30 design run so the language of this is these sites become designed runs. And I need to select 10 more. Meaning population units, what? 10 units can I augment it with that will improve that will make this as D optimal as possible given these constraints, and so instead so we’re thinking of population units as possible design runs and sample as design
NOTE Confidence: 0.87889427
00:29:33.769 --> 00:29:36.448 runs that we’ve chosen to use.
NOTE Confidence: 0.87889427
00:29:36.450 --> 00:29:39.762 OK, so I’m just going to go through
NOTE Confidence: 0.87889427
00:29:39.762 --> 00:29:42.388 an example to talk about this.
NOTE Confidence: 0.87089115
00:29:45.440 --> 00:29:47.456 Don’t have a ton more slides
NOTE Confidence: 0.87089115
00:29:47.456 --> 00:29:49.490 I should say so success.
NOTE Confidence: 0.87089115
00:29:49.490 --> 00:29:51.330 OK, so here’s an example.
NOTE Confidence: 0.87089115
00:29:51.330 --> 00:29:53.466 The success for all evaluation was
NOTE Confidence: 0.87089115
00:29:53.466 --> 00:29:55.332 an elementary school reading program
NOTE Confidence: 0.87089115
NOTE Confidence: 0.87089115
00:29:57.220 --> 00:30:00.388 The reason I like to use this example.
NOTE Confidence: 0.87089115
00:30:00.390 --> 00:30:02.476 Is that it’s old enough that strangely,
NOTE Confidence: 0.87089115
00:30:02.480 --> 00:30:04.231 they actually published in their
NOTE Confidence: 0.87089115
00:30:04.231 --> 00:30:06.303 paper a list of schools they
NOTE Confidence: 0.87089115
00:30:06.303 --> 00:30:08.291 actually named the schools in their
NOTE Confidence: 0.87089115
00:30:08.291 --> 00:30:10.059 study and characteristics of them.
NOTE Confidence: 0.87089115
I have other data on other studies where people have shared with me the names of the schools involved, but it’s all I have to keep it secret for the reason, so that the fact that this is available makes it easier to use. So what I did is I went back and looked at the Common Core of data I identified based upon the study that they were. In the way that they talked about their study, that Title One elementary schools in the US at that time might be a reasonable population to think that
NOTE Confidence: 0.87089115
00:30:40.245 --> 00:30:42.379 they were trying to sample for.
NOTE Confidence: 0.87089115
00:30:42.380 --> 00:30:44.648 Title one schools have at least 40%
NOTE Confidence: 0.87089115
00:30:44.650 --> 00:30:46.498 students on free or reduced lunch and
NOTE Confidence: 0.87089115
00:30:46.498 --> 00:30:48.352 meet a few other characteristics and
NOTE Confidence: 0.87089115
00:30:48.352 --> 00:30:50.697 then they identified in the paper 5
NOTE Confidence: 0.87089115
00:30:50.759 --> 00:30:53.069 variables that they thought were possible.
NOTE Confidence: 0.87089115
00:30:53.070 --> 00:30:54.690 Moderators that would be really
NOTE Confidence: 0.87089115
00:30:54.690 --> 00:30:55.986 important to include here,
NOTE Confidence: 0.87089115
00:30:55.990 --> 00:30:57.934 so they talked about total school
NOTE Confidence: 0.87089115
00:30:57.934 --> 00:30:59.230 enrollment being a factor,
NOTE Confidence: 0.87089115
00:30:59.230 --> 00:31:00.526 racial and ethnic composition
NOTE Confidence: 0.87089115
00:31:00.526 --> 00:31:01.498 of the students.
NOTE Confidence: 0.87089115
00:31:01.500 --> 00:31:03.670 So I’m using that here as the
NOTE Confidence: 0.87089115
00:31:03.670 --> 00:31:05.644 proportion of students that are black
NOTE Confidence: 0.87089115
00:31:05.644 --> 00:31:07.612 and the proportion that are Hispanic
NOTE Confidence: 0.87089115
and SES meaning and a professor but

NOTE Confidence: 0.87089115

proportion at free and reduced lunch.
NOTE Confidence: 0.87089115

And they also talk about Urbanicity
NOTE Confidence: 0.87089115

because they tried to make sure they
NOTE Confidence: 0.87089115

had some urban schools in rural
NOTE Confidence: 0.87089115

schools and some other schools.
NOTE Confidence: 0.87089115

So I should say in previous work of
NOTE Confidence: 0.87089115

mine I’ve used this as an example
NOTE Confidence: 0.87089115

and then this study actually ends
NOTE Confidence: 0.87089115

up being a fairly representative
NOTE Confidence: 0.87089115

sample of the population,
NOTE Confidence: 0.87089115

which is interesting.
NOTE Confidence: 0.87089115

Is it because they had no real way
NOTE Confidence: 0.87089115

of they weren’t doing it totally in
NOTE Confidence: 0.87089115

a way that allowed them to compare
NOTE Confidence: 0.87089115

this or to choose this in a way,
but they did a lot of work to try to be representative, and this is much more representative sample then.

I take the modal study is in this domain. So what I did for this example as I’m comparing for you the actual sample selected, so it’s always these five moderators. The actual sample selected a representative sample selected. If I instead I use something like stratified random sampling. The optimal sample based upon these
five covariates using this ALG

And So what I would do here as I'd say.

So if I used 36 sites that were

selected with random sampling with

stratified random sampling and

then I reserved five of them that

then I would change, you know,

the number of those.

So you could see this sort of effect.

You know that augmentation would

have and then for each of these I

calculated a few different statistics.
So you can see how this works. So one of them is D. This measure of the optimality. And I’m going to show you relative measures because it’s a little easier to see with relative measures. I’m also including B, which is generalizability index that I developed. It ranges from zero to one and one means that the sample isn’t exact miniature of the population on these covariates. 0 means they like are completely orthogonal to each other. Chip in its the index is highly related.
to measures of undercoverage and how and the performance of reweighting methods. And then the mean are meaning the ratio between the the ratio between the standard deviation in the sample and population across these five covariates. OK, so this is what we get out of this, and so I just want to talk through this and I'm happy to answer questions if there's. Really wish I could figure out how to do a. Really wish I could figure out how to do a.
So on the left is the D optimal sample, meaning the whole all 41 sites were actually selected using a D optimal algorithm on the. Right is the ideal for the average treatment effect. We’ve used random sampling to stratified random sampling and just like the sample an in the bar right right there that like right up there. This Gray vertical bar is the actual study values for each of these. OK so you can see the actual study and then what I’ve got are three.
different lines going on here.

So one line that’s sloping down in solid is the relative D optimality value,

You know the highest value is if it was a D optimal allocation.

This is a ratio,

and then I’ve got the B index,

which is the generalizability index.

Is the other solid line going up,

and so, not surprisingly,

that’s increasing as we get to stratified sampling,

so these are going in opposition

so these are going in opposition

to each other.

Is what I’m saying and then this
relative average standard deviation.

Is this dotted bar line?

So what so the main message of this is that these are going in opposite directions right that?

The sample that is optimal for the average treatment effect is on the right.

The sample that is optimal for moderate are effects is on the left,

and so there’s tradeoffs involved in these that what’s best for one is not best for the other.

But there’s other lessons in here,

wow, so the B index is,

which is a measure of similarity
between the sample and population, is actually not that bad for the optimal sample. So these the sample is different from the population. You’d have to do some re waiting, but it wouldn’t be a tremendous amount of re waiting to be able to estimate the average treatment effect. And so one lesson that you could think of it from. This is if you actually if we designed randomized trials to test moderators, we’d actually be in a pretty good space to test moderators. And to estimate the average treatment effect,
It wouldn’t be that far off.
It wouldn’t be.
It wouldn’t be terrible,
and that makes sense because we’re covering so much of the population by getting her across a bunch of moderators that we can do so that we can re wait when in a domain in which there’s no act extrapolations, we have positive ITI we can re wait next. Another sort of I think finding here is if we look over at the right hand side. If we do, you know the trade off is. If I do select for the average treatment effect.
I do get a tremendously, you know I can select for the average treatment effect and do pretty well for the average human effect, but not so well for that. For the moderators, and so what's ideal for average is definitely not deal for the moderate are tests. As I was saying, they actually did a pretty good job in terms of representativeness. You can see that that top dot, but if you look at the bottom
at the other two dots you can see they didn’t do so well for. Being able to test these moderators.

OK, so in case that was not intuitive another way you could look at this is to actually just look at what these samples these features would look like. In the top the top row here are population distributions. Of these five covariates that were sort of identified, and then at the bottom row is actually the study that they had. So what their actual sample looked like.
And then the middle is what AD NOTE Confidence: 0.861584369999999 optimal sample would look like. NOTE Confidence: 0.861584369999999
And then I’ve overlaid on here. NOTE Confidence: 0.861584369999999
These are values, NOTE Confidence: 0.861584369999999
so giving you a sense if R is greater is 1. NOTE Confidence: 0.861584369999999
It means the sample is like the same NOTE Confidence: 0.861584369999999
standard deviation as in the population. NOTE Confidence: 0.861584369999999
If R is greater than one, NOTE Confidence: 0.861584369999999
it means I’ve got more heterogeneity NOTE Confidence: 0.861584369999999
in my sample than in my population, NOTE Confidence: 0.861584369999999
which improves my ability to NOTE Confidence: 0.861584369999999
estimate moderate are effects. NOTE Confidence: 0.861584369999999
And So what you see are a few things. NOTE Confidence: 0.861584369999999
One is in that the optimal sample is. NOTE Confidence: 0.861584369999999
It pushes things towards the extremes, NOTE Confidence: 0.861584369999999
right?
It’s pushing them towards the extremes to get endpoints which we know from basic experimental design, improved abilities.

The other nice thing though, is a concern always when you’re doing experimental design like this is that you’re going to get your highly focused on like a linearity assumption that you’re going to your. Your ideal sample would have a strong linearity assumption to it, but because you have multiple variables an because not all design runs are possible. In the population,
you end up with these middle points as well so you don’t end up with only things on both extremes. You end up with some middle points which allow you to be able to estimate nonlinear relationships as well. Me and a Third Point with me. You can see that you would just end up with a lot more variation and so not surprisingly, total students, which, again schools studies, tend to over represent very large schools and large school districts. You can see this is a place where there would be really a real opportunity for a change that in
00:39:05.447 --> 00:39:07.225 the sample this was less than one
00:39:07.225 --> 00:39:09.330 an in the in the optimal sample
00:39:09.330 --> 00:39:11.340 it would be greater than three.
00:39:11.340 --> 00:39:13.908 But you can see this for most of
00:39:13.908 --> 00:39:15.630 these variables that you could.
00:39:15.630 --> 00:39:17.250 You could potentially improve your
00:39:17.250 --> 00:39:19.260 power and ability to estimate things
00:39:19.260 --> 00:39:20.910 And in my paper I actually show that
00:39:20.910 --> 00:39:23.318 because many of these are proportions,
00:39:23.318 --> 00:39:25.530 you can actually also think about
00:39:25.530 --> 00:39:27.402 student level moderate yrs because
00:39:27.402 --> 00:39:29.088 proportions conveniently like the
00:39:29.088 --> 00:39:30.608 variation in proportions at the
00:39:30.608 --> 00:39:32.508 individual level as a function of
00:39:32.564 --> 00:39:34.280
the proportion at the aggregate.
And so you can actually kind of workout a way to select your samples so that you can.
Estimate individual affects, not just cluster aggregates
for those variables.
OK, and so then the final point.
I just want to make is that the other thing that this shows is that there’s real benefit to augmentation.
Maybe? You know,
maybe I’m not going to be able to convince people to go switch to selecting their samples based upon extremes.
But maybe you can convince people that they could preserve 5 or 10.
You know 10% or 25% of their sample for D optimality. So you choose. In this case it would be like choosing 30 of your sites using stratified sampling to represent the population, and then look for like an additional class tenor 11 sites that might be more extreme that allow you to make sure that you can estimate these. These moderate are effects that you're interested in. And you can see that doing so key file with these little lines you can see that doing so doesn’t have a huge
effect on the average treatment effect, but it does greatly improve your ability to test moderators.

OK, so just to wrap up my take home points today, I suppose would be that the design of randomized trials has big implications for ability to generalize. And that I think we, I think what I’ve seen over time is that people who are asking people to scientists to think about how populations you know. What are the populations I would add as a side benefit of this is I’ve watched as people in asking people to scientists to think.
NOTE Confidence: 0.87828714
00:41:18.527 --> 00:41:20.219 about what the population is.
NOTE Confidence: 0.87828714
00:41:20.219 --> 00:41:22.253 It actually sometimes make some change
NOTE Confidence: 0.87828714
00:41:22.253 --> 00:41:24.300 with the intervention is because you kind
NOTE Confidence: 0.87828714
00:41:24.300 --> 00:41:26.510 of have to realize like is this is this.
NOTE Confidence: 0.87828714
00:41:26.510 --> 00:41:27.950 If this is the population,
NOTE Confidence: 0.87828714
00:41:27.950 --> 00:41:31.190 is this the right intervention?
NOTE Confidence: 0.87828714
00:41:31.190 --> 00:41:33.790 The second sort of point I would say,
NOTE Confidence: 0.87828714
00:41:33.790 --> 00:41:36.346 is that if we want to sort of estimate
NOTE Confidence: 0.87828714
00:41:36.346 --> 00:41:38.189 and test hypothesis and moderators
NOTE Confidence: 0.87828714
00:41:38.189 --> 00:41:40.797 that we would be wise to actually
NOTE Confidence: 0.87828714
00:41:40.797 --> 00:41:43.533 plan to do so and to think about how
NOTE Confidence: 0.87828714
00:41:43.540 --> 00:41:45.390 to have better design sensitivity
NOTE Confidence: 0.87828714
00:41:45.390 --> 00:41:47.240 and statistical statistical power for
NOTE Confidence: 0.87828714
00:41:47.294 --> 00:41:48.854 doing so instead of waiting until
NOTE Confidence: 0.87828714
00:41:48.854 --> 00:41:51.285 the end and then the last point is
NOTE Confidence: 0.87828714
just that this augmentation approach indicates that we don’t have to be perfect at this like that, we could just, you know, use do this for part of our sample. And we would be better off and then I guess I would say maybe my general philosophy in all of this design is that. What I’m trying to do is to get people to think differently and plan differently, and by doing so, even if you don’t succeed 100%, you’re better off than you would have been before, and you’re now able to be in the realm in which you have positive
00:42:21.552 --> 00:42:22.605 ITI and heterogeneity,
00:42:22.610 --> 00:42:24.765 and you’re able to actually
00:42:26.060 --> 00:42:27.936 To get better estimators at the end.
00:42:30.570 --> 00:42:33.482 Thank you, this is all my contact
00:42:33.482 --> 00:42:35.945 information and this is the paper
00:42:35.945 --> 00:42:38.207 that this talk is really about.
00:42:38.210 --> 00:42:40.220 I’m happy to answer questions.
00:42:41.220 --> 00:42:42.620 Thanks so much. Best,
00:42:42.620 --> 00:42:45.141 I think that’s really nice talk and
00:42:45.141 --> 00:42:47.235 thank you for being so inspiring.
00:42:47.240 --> 00:42:49.166 And maybe let’s open to questions
00:42:49.166 --> 00:42:51.694 1st to see if we have any
00:42:51.694 --> 00:42:53.254 questions from the audience.
00:42:55.280 --> 00:42:58.146 If so, please speak up or, you know,
send a chat. Either one is OK.

And if not, I can go first.

'cause I do have a couple of questions.

So, so first of all, I think you know there is a constant tension.

Of course, like you know when we work with really large trials in the healthcare system,

I think there is a tension between how do we better represent the population of interest?

Because we want to get effectiveness information 'cause we're spending millions of dollars.

But also I think there is a concern on you know how to really better engage these large clusters,
00:43:42.000 --> 00:43:44.010 etc. And so I think.

00:43:44.010 --> 00:43:45.625 People end up getting convenience samples because that’s reality.

00:43:45.625 --> 00:43:46.917 Even though I do believe that there’s so much more to improve because they’re spending so much money right.

00:43:46.920 --> 00:43:50.910 And then in the end, you know they may be answering a different question if they have a very highly selected sample and then people also worry about you know, disparities in their sample selection, so that you’re basically not covering you know people with maybe more
vulnerable conditions etc in your study,
but you wish to answer questions.
What is population?
So I feel like all of this very,
very relevant, at least to my work.
And so I really appreciate you know this aspect of how to design styles better.
1 one of the questions I have is that generally,
you know we may not really know priority what the effect modifiers are in planning.
The trial that we may have not enough knowledge amount.
So how does that generally come into the discussion in the design stage?
Is it the tradition that in educational
studies we have a lot of prime knowledge on what these effect modifiers are or? No, so I think this is actually one of the hardest parts, right? Like I just laid out. Sort of, if we knew what the why zeros and Y ones were, this is what we would. You know this is that would be optimal, but I could be wrong on what those are, right? And I don’t know. I mean, I think so. There’s sort of what I call the usual suspects in education,
which are like race class and gender,

which are really more of concerns

about disparity or about closing

And so those in depth and

urbanicity I would add seems to be

something that people often like.

What add into that as characteristics.

Those are the ones that

people most often use.

But the and those are

available in population data,

which is the other thing

that your limit your.

A real limiter is what is available

in the population, sure.
What I gather is more likely to be a moderate achievement or something like baseline achievement, right? So if my outcome is achievement then I would think that what the achievement is baseline in any of these places would matter. That’s harder to get an education. I mean that information from places, so there’s been some work trying to equate tests across across states. I guess that they do. Sometimes they use gain scores just to subtract off that baseline achievement, right?
do. Yeah, exactly,

but the problem is that like if you wanted to use state tests or something,

there are different tests in every state,

and so there’s all of these equating issues that go in with it.

My guess is that implementation is another one that people often come up with is

Now this is tricky because implementation is coming after assignment and

so it’s really like a mediator.

But if you think about often,

if you think implementation may be part of what is leading

to treatment effect variation,
then you can kind of think well what.

Affects implementation and so

people can sometimes think a little

more carefully about what affects

implementation like Oh well,

it’s probably.

You might try to find various

measures of this for the

implementation that sounds more like a.

It’s sort of a version of multiple

treatments, and it’s a violation of

the suitable condition, probably.
Yeah, yeah, exactly yeah.

So I mean so it gets tenuous. Yeah, I don’t.

I don’t have this is, you know, this is like I when I first started doing this work I was like, well assuming moderate yrs and assume a population moving on as a statistician.

But actually those are the two hardest things when working with people in planning these trials.

I’ll give you an example though.

Uh, like a positive case which was. I was part of designing something called the National Study of learning mindsets,
which is we randomly sampled
100 high schools in the US, and then we randomly and then the students. There were.
Ninth graders were in the study and so 9th graders were randomly assigned to either using a computer based intervention to a growth mindset intervention or something that was not growth mindset that was just sort of control condition and. And in doing that we had the social psychologist I was working with had a lot of questions like we had a lot of hard questions about these.
moderators and they had a lot of theories about what they might be like.

So we oversampled like we. Looked at for example, proportion of students that are minorities in the school and then. And when we started we wanted to stratify on that as well as school achievement as well, and so we needed to be able to cross these in a way in order to. In order to D alias these trends and so that they could estimate one without, you know, without estimating with separated
So a lot of it, so I mean, in some places people are much more better, much better theoretically. Thinking about this, I think some fields are better at thinking about these mechanisms than other fields are, but yeah, it’s really hard. So my my other other than my like standard set, you know, race, class and gender is, I often ask people to to think about. Watch what variables might just be related to other things, right?
That if you could. If you can think of it as like I ultimately want to test moderators that I don’t really know exactly what they are, but I need to get variation in them, and that means probably by getting variation in something else. I’m going to get variation in those as well. The size of your site, you know, I think I’m going to get variation in those as well. You can see that everybody’s in very large sites. And so what if we increase the variation?
The variation of district size and school size? It seems like has to increase variation of some other things as well. Agreed, agreed.

Yeah, I think another aspect why I so appreciate like the aspect of effect modifiers is that it really is a way to move forward with information from Co. Buryats and then when we talk on 80 in a randomized study, we often ignore covariates and then just hold that the unadjusted analysis provides unbiased estimates, even though that may come with
00:50:12.888 --> 00:50:14.022 a larger variation.
NOTE Confidence: 0.83546096
00:50:14.030 --> 00:50:16.690 So by really talking about effect modifiers,
NOTE Confidence: 0.83546096
00:50:16.690 --> 00:50:18.580 we somehow incurve those information,
NOTE Confidence: 0.83546096
00:50:18.580 --> 00:50:20.854 but perhaps even in the estimation
NOTE Confidence: 0.83546096
00:50:20.854 --> 00:50:22.370 of the average affect,
NOTE Confidence: 0.83546096
00:50:22.370 --> 00:50:23.890 which can increase precision.
NOTE Confidence: 0.83546096
00:50:23.890 --> 00:50:24.650 So yeah.
NOTE Confidence: 0.85203755
00:50:26.800 --> 00:50:27.070 Yeah.
NOTE Confidence: 0.79443485
00:50:30.360 --> 00:50:32.112 Yeah I haven’t questioned,
NOTE Confidence: 0.79443485
00:50:32.112 --> 00:50:34.740 so I actually have two questions,
NOTE Confidence: 0.79443485
00:50:34.740 --> 00:50:36.930 so seems you’re you’re interested
NOTE Confidence: 0.79443485
00:50:36.930 --> 00:50:38.678 in both individual level
NOTE Confidence: 0.79443485
00:50:38.680 --> 00:50:41.310 an cluster level moderators right? When
NOTE Confidence: 0.79443485
00:50:41.310 --> 00:50:43.500 you have cluster level moderators,
NOTE Confidence: 0.79443485
00:50:43.500 --> 00:50:45.690 how does that work with
NOTE Confidence: 0.79443485
00:50:45.690 --> 00:50:47.002 the augmentation design?
'cause you mentioned that in the orientation design, you might want to pick like 10 or 30% of the sides. An kind of like choose them samples from those. But how do you choose those 3%? You choose those third percent with respect to the cluster level modelers. You could do it with respect to either. You can do it with respect there because it depends the way you enter them into the model so. You work out so you can work out that if I'm interested in the individual level.
Moderate are that what I need to do is I need the I actually need to include as a covariate the interaction between like X an 1 -- X. That’s what I included here as the covariates. I’m ’cause I want to increase the variation within sites right? And so you could do it either way, because what it’s doing, what the augmentation approach does? Is it assess is how much variation you have in those 30 sites already. And then it looks for possible design runs, meaning other samples. Other places that would greatly improve that.
And it just it doesn’t algorithmically, which is nice. The that I would say I should add an extra benefit of this is concerned with all of this sample recruitment is that there’s non response. You’re never going to get, you know it’s not like I can just say like. Here’s your. Here’s your like 40 sites go ask them and they’re going to say yes, but with the augmentation approach if somebody says no you can like throw that out and then go look for it like what’s the next best alternative.
so you can keep kind of iterating.

So, in our current application, I think the attributes are all cluster level.

Information right summary statistics is you could also do this with individual level only.

That’s in the in the slides but you can think about this with the same statistics you would.
NOTE Confidence: 0.85039884
00:52:51.675 --> 00:52:53.145 get at the cluster level.
NOTE Confidence: 0.85039884
00:52:53.150 --> 00:52:55.302 You can’t get the variation you can with
NOTE Confidence: 0.85039884
00:52:55.302 --> 00:52:57.387 a normal like a continuous variable.
NOTE Confidence: 0.85039884
00:52:57.390 --> 00:52:58.642 I can’t get the.
NOTE Confidence: 0.85039884
00:52:58.642 --> 00:53:00.520 I don’t have the standard deviation.
NOTE Confidence: 0.85039884
00:53:00.520 --> 00:53:02.510 Insights I can’t do that,
NOTE Confidence: 0.85039884
00:53:02.510 --> 00:53:04.850 right, right?
NOTE Confidence: 0.85039884
00:53:04.850 --> 00:53:06.150 Also, the other question
NOTE Confidence: 0.85039884
00:53:06.150 --> 00:53:07.778 is about so it seems
NOTE Confidence: 0.8673171
00:53:07.780 --> 00:53:09.400 like all these designs are
NOTE Confidence: 0.8673171
00:53:09.400 --> 00:53:11.028 under the assumption that you’re
NOTE Confidence: 0.8673171
00:53:11.030 --> 00:53:12.650 interested in all the moderators,
NOTE Confidence: 0.8673171
00:53:12.650 --> 00:53:14.600 like equally like meaning that you’re
NOTE Confidence: 0.8673171
00:53:14.600 --> 00:53:16.876 not like you don’t have like primary
NOTE Confidence: 0.8673171
00:53:16.876 --> 00:53:18.505 moderators that you’re interested in
NOTE Confidence: 0.8673171
estimating the moderate effect on and then you have a couple of them that. I mean, if you you can. So I mean, what’s great? I mean, I think about this like this area is that it’s been so richly developed in this other sort of design runway is that you can actually add weights. So you can say like I’m more like or more interested in this variable than that variable, and it will focus. You know it will focus on one variable over the other. Because you Can you imagine like that D matrix. The determinant of S.
You could just add weights into that. So if you add weights into that then you can start looking at the determinant of that weighted version. Right, so you would add weights in that matrix and optimize that. Yeah exactly, if you add weight so that some of the Kobe rates are getting more weight than others. So I guess just maybe more precisely, I think the D optimality criteria. Shouldn’t that be the X transpose V universe in general? Just because you’re working with
clustered randomized studies so that the outcome correlation is somehow included in that variance? Is that what the algorithm is trying to get in general for? Yeah, yeah. Inverse, yeah, it’s the X prime X inverse, which is the covariance. Yeah, but but really not so it you don’t. You don’t need to have the variance matrix of the outcome. Exactly, you don’t need to have the outcome, it’s all about the inputs, right? But that’s, which is why you can do it in advance, right? So it’s all about the Android just nicely.
You can leverage population data that you have totally. And again, I assume in all of this that like there’s measurement error and that you know you can just sort of assume that like you’re not going to get it exactly right, but my baseline comparison is always what are we doing now versus what could we be doing an like frankly anything. Any you know it looks to me like we have fairly homogeneous samples and that any effort we can make to increase heterogeneity is an improvement.
but let’s see if we have any final questions from the audience.
Alrighty, if not, I think you know I’m, I’m sure if you have any questions that petition will we have to answer them offline by email?
So thanks so much. Again, bath. It’s really nice to have you and thanks to everybody for attending or see all of you. Hopefully after the break so have a great holiday. See you later.
Totally not master connect Totally not master connect alright, thanks again.
Talk to you later. Bye take care.