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Summary 

This paper considers the design of observational longitudinal studies with a continu-

ous response and a binary time-invariant exposure, where, typically, the exposure is 

unbalanced, the mean response in the two groups differs at baseline and the measure-

ment times might not be the same for all participants. We consider group differences 

that are constant and those that increase linearly with time. We study power, number 

of study participants (N ) and number of repeated measures (r), and provide formulas 

for each quantity when the other two are fixed, for compound symmetry, damped ex-

ponential and random intercepts and slopes covariances. When both N and r can be 

chosen by the investigator, we study the optimal combination for maximizing power 

subject to a cost constraint and minimizing cost for fixed power. Intuitive parameteri-

zations are used for all quantities. All calculations are implemented in freely available 

software. 

1 Introduction 

Sample size and power calculation in longitudinal studies with continuous outcomes 

that compare two groups have been considered previously (Yi and Panzarella, 2002; 

Schouten, 1999; Galbraith and Marschner, 2002; Frison and Pocock, 1992, 1997; Daw-

son and Lagakos, 1993; Raudenbush and Xiao-Feng, 2001; Overall and Doyle, 1994; 

Hedeker et al., 1999; Jung and Ahn, 2003; Schlesselman, 1973; Liu and Liang, 1997; 

Kirby et al., 1994; Rochon, 1998). These publications have based their formulas on sev-

eral different test statistics, designed to maximize power over several typical hypothe-

ses which arise in longitudinal studies. Most of this previous work was motivated by 

the design of clinical trials. In an observational setting, study design calculations must 

be based on tests which remain valid when baseline response levels of the exposed 
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and unexposed differ and when the exposure prevalence is not 0.5. Although most 

of the aforementioned formulas can be applied to a non-randomized setting, in-depth 

investigation of the formulas in settings relevant in observational research is lacking. 

For example, a study of the behavior of study power as the exposure prevalence devi-

ates from 0.5 in longitudinal designs has not appeared previously. In clinical trials, the 

time scale of interest is usually time from randomization and the repeated measures 

are scheduled at a common set of times for all participants – therefore, all the sample 

size formulas were based on this case. Here, we consider situations where time in the 

study is not the time variable of interest, but rather age, time since exposure or other 

measures of time of importance. Design of longitudinal studies is complex, involve 

the a priori specification of up to ten parameters about which investigators may have 

little information unless pilot data are available. We therefore formulated intuitive 

parameterizations to our formulas, using percent changes for the specification of ef-

fects, and intuitive covariance parameters for three covariance structures in order to 

facilitate widespread use in applications. 

In addition to exposure prevalence, we studied in detail the effect of the following 

factors on power: the number of repeated measures; the length of follow-up, the fre-

quency of measurement; the use of age as the time metameter instead of time since 

randomization. The effect of these parameters on the required number of partici-

pants when the number of repeated measures is fixed was also studied. We studied 

the effect of the covariance parameters on the required number of repeated measures 

when the number of participants is fixed. Additionally, when the number of study 

participants (N ) and the number of repeated measures (r) can be controlled by the 

investigator, their optimal combination for maximizing the power to detect a group 

difference subject to a cost constraint was derived. Cochran (1977) and Raudenbush 

(1997) examined this problem in the special cases of the alternative hypothesis of a 

group difference that is constant over time and under compound symmetry. Snijders 

and Bosker (1993) developed the methodology to obtain the optimal number of par-
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ticipants and measurements, (Nopt, ropt), subject to a cost constraint, under compound 

symmetry (CS) and random slopes (RS) covariance structures, for both a group differ-

ence that is constant over time (CMD) and for a group by time interaction (LDD). The 

model upon which they based these developments explicitly separates the between-

from the within- subjects effects (B&W), and optimal designs are different than those 

given in this paper which follow the modeling approaches most commonly used in 

epidemiology (models (2.3)-(2.8)). In this paper, we will briefly address how design 

considerations differ for the B&W model from the models considered here, as rele-

vant, and in addition, we extend results to the damped exponential (DEX) covariance 

and settings where subjects are observed at different times (e.g. when baseline ages 

vary). Finally, we study in detail for the first time the effect of all the parameters on 

the resulting optimal combination. 

This paper is structured as follows. In section 2, we present intuitively parameter-

ized models for the two alternative hypotheses commonly considered in longitudinal 

studies, and the test statistics that will serve as the basis for power and sample size 

calculation for each of them. We show that some of the test statistics that have been 

considered previously are biased or less efficient in observational (non-randomized) 

studies, when the expected value of the baseline measures is not equal in the two ex-

posure groups. In section 3, we derive formulas for power and sample size for an 

arbitrary covariance matrix and study the effect of exposure prevalence. Using an 

intuitive formulation for the parameters of interest, as well as for the nuisance param-

eters, we provide the formulas under compound symmetry and study the effect of 

the covariance between repeated measurements on power. Then, we extend the for-

mulas to other covariance structures by incorporating additional intuitively defined 

parameters, formulated in a manner that is intended to be accessible to non-statistical 

investigators and enables the use of existing pilot or published data and when un-

available, intuitive hunches. The effects of departure from compound symmetry on 

power, sample size and number of repeated measures are studied. In section 4, we 
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provide methods to find the optimal combination of number of participants and num-

ber of repeated measures for maximizing power under a fixed budgetary constraint. 

In section 5, we explore aspects of the design of an epidemiological study of the ef-

fects of cigarette smoking on lung function, based on publicly available data that we 

will treat as a pilot study. In section 6, we compare the functionality of currently 

available software for longitudinal study design, discuss their limitations, and intro-

duce our comprehensive software for the observational longitudinal design setting. 

Finally, in section 7, we summarize our findings on the many different factors that 

need to be taken into account when planning a longitudinal observational study of a 

time-invariant exposure. 

2 Notation and Preliminary Results 

Consider the case where there are two groups, the exposed and the non-exposed. Let 

N be the total sample size and pe be the prevalence of exposure. Let Yij be a normally 

distributed outcome of interest for the measurement taken at the jth time (j = 1, . . . , r) 

for the ith (i = 1, . . . , N) participant, and let ki (ki = 0, 1) be the exposure group for 

subject i. We consider studies that obtain repeated measures every s time units, as 

is the usual design in epidemiologic studies. Thus, the total length of follow-up is 

τ = s r. For example, a study that follows participants every 6 months (s = 6) for five 

years (τ = 12∗5 = 60 months) would have 11 measures per participant, one at baseline 

plus r = 10 repeated measures. In epidemiology, there is often interest in the variation 

of the response by age and not by time in the study. Since participants enter the study 

at different ages, each participant has a different set of ages, ti, over which they are 

observed. Since each measurement is taken every s units, the vector of times is fully 

defined by the initial time (age at entry) ti0, and then t0 i = (ti0, ti0 +s, ti0 +2s, . . . , ti0 + 

r s). When V (t0) = 0, where V (t0) is the variance of the primary time metameter of 

the analysis at baseline, as when using time since enrollment in the study as the time 
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variable of interest, all participants have the same time vector. We assume a linear 

form for the mean, E [Yi] = XiB (i = 1, . . . , N), where Xi is the covariate matrix 

for participant i, and B is the vector of unknown regression coefficients relating the 

conditional mean of Yi to its corresponding covariates; and V ar [Yi|Xi] = Σi (i = 

1, . . . , N), where Σi is the (r + 1) × (r + 1) residual covariance matrix assumed equal 

for all participants. Note that Σi can be any valid covariance matrix, and can include 

terms associated with between-subjects variability as well as within-subjects variation. 

The generalized least squares (GLS) estimator of B is 

N
!−1 N

! X X 
B̂ = X0 iΣ

−1 X0 iΣ
−1 .i Xi i Yi 

i=1 i=1 

One way to circumvent the problem of the design matrix not being known a priori 

in an observational study is to use the asymptotic variance of this estimator. Other 

possible approaches are discussed in section 7. The asymptotic variance of B̂ is 
N 
1 ΣB, 

where � � ��−1 
X0 iΣ

−1ΣB = EX i Xi . (2.1) 

and, provided Σi does not depend on the covariates, this covariance matrix can be 

fully specified by knowing the first and second order moments of the covariate distri-

bution, and not their full distribution (Tu et al., 2004). We assume that the prevalence 

of exposure is pe, the variance of the initial time is V (t0) and the correlation between 

exposure and initial time is ρe,t0 . We also assume that the variance of the initial time is 

the same in the two exposure groups. 

Our sample size and power equations are based on the Wald test for the coefficient of 

interest. Thus, our test statistic has the canonical form 
√ 

0 ̂N c B 
T = √ , (2.2) 

c0ΣBc 

where c is a (g + 1) × 1 vector, where g is the number of explanatory variables in 

the model, with a one and g zeros isolating the particular component of B that is of 

interest. Our models will be written with the coefficient of interest always the last one, 

so c will be of the form c = (0, . . . , 0, 1). 
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Figure 1: Possible patterns of response under the alternative hypotheses considered in 
this paper. In A and B, all participants have six measurements at the same time points. 
In C and D, the graph shows six participants (three exposed and three unexposed) 
with a total of four measurements each. The different lines represent unexposed (�), 
exposed (N) and the difference between exposed and unexposed (- - -). 
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Power and sample size calculations depend on the alternative hypothesis under con-

sideration. Two patterns have been commonly considered in past literature, and both 

are quite relevant for applications in epidemiology. We first consider a constant mean 

difference (CMD) (Frison and Pocock, 1992) between exposed and unexposed (fig-

ure 1A for V (t0) = 0 and figure 1C for V (t0) > 0). The CMD alternative hypothesis 

in the context of clinical trials assumes that the baseline means of the two groups are 

equal, and then the post-baseline means have a constant difference with respect to 

time. In observational studies, there is nothing special about baseline, and we need 

to allow the two groups to differ at baseline as well, as would usually be the case in 

observational studies. This situation can be modeled as 

E (Yij |Xij ) = β0 + β1tij + β2ki (2.3) 

if the effect of time can be considered linear. Our formulas will be based on 

model (2.3), however conclusions will extend to the more general model 

E (Yij |Xij ) = β0 + f(tij ; β1) + β2ki, (2.4) 

where f(tij ; β1) is an arbitrary function of time, only if time and exposure can be 

considered independent. The resulting response profiles for the exposed and unex-

posed are parallel. The null hypothesis of interest is H0 : β2 = 0 vs. the alternative, 

H0 : β2 6 0, and serves as a basis for the test of whether the two response profiles = 

coincide or not. When all participants are observed at the same set of time points, we 

can include indicators for the (r + 1) time points and write model (2.4) as 

E (Yij |Xij ) = µ0.0 + µ0.1 + · · · + µ0.r + β2ki, (2.5) 

where µ0.0, µ0.1, · · · , µ0.r give the means at times t0, . . . , tr in the unexposed group, and 

β2 is the constant difference in response between exposed and unexposed. 

In the second pattern, linearly divergent differences (LDD), the effect of exposure 

varies linearly with time (figure 1B for V (t0) = 0 and figure 1D for V (t0) > 0) (Fri-

son and Pocock, 1997). In clinical trials, the mean of the two groups at baseline are 
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assumed to be equal. Here, we allow for a baseline difference, as this would usually 

be the case in observational studies. In the simplest version of LDD, the effect of time 

is linear in both groups (figure 1B) and can be modeled as 

E (Yij |Xij ) = γ0 + γ1tij + γ2ki + γ3 (tij × ki) , (2.6) 

although we can allow the relationship between response and time in the unexposed 

to be more general, of form 

E (Yij|Xij ) = γ0 + f (tij ; γ1) + γ2ki + γ3 (tij × ki) , (2.7) 

where f (tij ; γ1) is now a function of time that includes a linear term but is otherwise 

arbitrary. The formulas we derive, however, will be valid for model (2.7) only if expo-

sure and time can be considered independent. When all participants are observed at 

the same set of time points, one can use the model 

E (Yij |Xij ) = µ0.0 + µ0.1 + · · · + µ0.r + γ2ki + γ3(ki × tj ), (2.8) 

which accommodates any shape over time. The test of interest is thus H0 : γ3 = 0 

vs. the alternative HA 6 0, where γ3 is the difference in the rates of change of : γ3 = 

the response over time between the exposed and unexposed, per a single unit of time. 

Note that if the null hypothesis is accepted there can still be a constant difference at 

baseline, which persists over time, between the exposed and unexposed, as in CMD. 

That is, we test whether the two response profiles are parallel or not, or, in other 

words, whether the effect of time is the same in exposed and unexposed. 

Models (2.6)-(2.8) assume that the cross-sectional and longitudinal effects of time coin-

cide. Models that separate the cross-sectional (between-subjects) and the longitudinal 

(within-subjects) effects have been developed (B&W) (Diggle et al., 2002; Fitzmaurice 

et al., 2004; Neuhaus and Kalbfleisch, 1998; Ware et al., 1990). Applying those mod-

els and allowing different effects for the exposed and the unexposed, one can fit the 
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following model to the data, 

E (Yij |Xij ) = η0 + η1ti0 + η2 (tij − ti0) + η3ki 

+ η4 (ki × ti0) + η5 (ki × (tij − ti0)) (2.9) 

= η0 + η1
0 ti0 + η2tij + η3ki + η4 

0 (ki × ti0) + η5 (ki × tij ) , 

where η1 is the cross-sectional effect of time in the unexposed, η4 is the difference 

in the cross-sectional effect of time between the exposed and the unexposed, η2 is the 

longitudinal effect of time in the unexposed, and η5 is the difference in the longitudinal 

effect of time between the exposed and the unexposed. The hypothesis to be tested 

is H0 : η5 = 0 vs. the alternative HA : η5 6= 0. When there is no confounding, which 

in this context means that the exposed and unexposed do not differ with respect to 

the distribution of unmeasured risk factors, and when V (t0) = 0, the distribution of 

time is the same among the exposed and unexposed, and η5 = γ3. Otherwise, they are 

different, and η5 will be the parameter of interest in epidemiology. Another possibility 

is to fit a model for the differences from one visit to the next, 

E (Yi,j − Yi,j−1|Xij ) = λ0 + λ1ki. (2.10) � � 
We prove in Appendix A.1.4 that sλ̂1 = η̂5 and s2V ar λ̂1 = V ar (η̂5), so inferences 

based on λ̂1 or η̂5 are equivalent. As relevant, we will discuss the impact on design 

when (2.9) or (2.10) is to be used instead of (2.6)-(2.8). 

Other test statistics have been previously proposed for these settings. Frison and 

Pocock (1992, 1997) derived the optimal test statistics for both the CMD and the LDD 

hypothesis in the context of clinical trials, which they called ANCOVA and SLAIN 

respectively. They used the so called summary measure or two-stage approach to de-

rive their test statistics, and in their derivation of these two tests some adjustment for 

the baseline response is involved. Since this baseline adjustment may be misleading, 

we derived in Appendix A.2 the form of the regression models that lead to the same 

ANCOVA and SLAIN test statistics when a Wald test of the parameter of interest is 

performed as in (2.2). Because differences at baseline among exposed and unexposed 
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commonly occur in observational studies, the properties of the test statistics are differ-

ent in observational studies compared to randomized trials. We show in Appendix A.2 

that, even though the ANCOVA test is still unbiased under CMD in an observational 

study, it is less efficient than the one we use; and that the SLAIN test is biased in gen-

eral under LDD in an observational study. Therefore, these tests should not be used in 

observational studies. In the absence of additional model covariates, with all partici-

pants observed at the same time points, a two-stage estimator, where a regression of 

the response vs. time is performed for each participant, and in a second stage, these N 

independent estimates of the slopes are regressed on exposure, is algebraically iden-

tical to the estimating γ3 from model (2.6) by OLS (Appendix A.3). It turns out that if 

we can assume a compound symmetry (CS) covariance structure or a random slopes 

(RS) covariance structure, where random effects are assumed both for the intercept 

and the time slope, the two stage estimator, and, the OLS estimator are equivalent to 

the GLS estimator of γ3 (Appendix A.3). This result does not hold for damped expo-

nential (DEX) correlation structure (Appendix A.3). The two-stage approach and GLS 

approach do not coincide when participants are observed at different times. Since 

β̂2 and γ̂3 in this paper are GLS and therefore are the best linear unbiased estimates 

for their respective models (2.3)-(2.5) and (2.6)-(2.8) (Searle, 1971), other valid options 

for the testing of the LDD hypothesis, such as comparing the maximum change over 

the exposed to the maximum change in the unexposed (Koh-Banerjee et al., 2003), are 

inefficient and will not be considered further. 

The only parameters of the models given above that are needed for power calculations 

are β2, γ3 and η5. Typically, it is difficult to provide a priori values for these parameters 

that are realistic and well justified and even more difficult to supply realistic and well 

justified values for their variance. Therefore, we reparameterized the key parameters 

of the models above in terms of quantities more likely to be known to the investigator, 

available from published papers, or easily calculated in pilot data. These parameters 

are: 
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1. the mean response at baseline (or at the mean initial time) in the unexposed 

group (µ00), where µ00 = E (Yi0|ki = 0) , i = 1, · · · , N . 

2. the percent difference between exposed and unexposed groups (p1) at baseline 

(or at the mean initial time), where 

E (Yi0|ki = 1) − E (Yi0|ki = 0) 
p1 = ,

E (Yi0|ki = 0) 

i = 1, · · · , N . 

3. the percent change from baseline (or from the mean initial time) to end of follow-

up (or to the mean final time) in the unexposed group (p2), where 

E (Yiτ |ki = 0) − E (Yi0|ki = 0) 
p2 = ,

E (Yi0|ki = 0) 

i = 1, · · · , N . For situations where τ is not fixed, p2 is defined at time s instead 

of at time τ . 

4. the percent difference between the change from baseline (or from the mean initial 

time) to end of follow-up (or mean final time) in the exposed group and the 

unexposed group (p3), where 

E (Yiτ − Yi0|ki = 1) − E (Yiτ − Yi0|ki = 0) 
p3 = ,

E (Yiτ − Yi0|ki = 0) 

i = 1, · · · , N . When p2 = 0, p3 will be defined as the percent change from baseline 

(or from the mean initial time) to the end of follow-up (or to the mean final time) 

in the exposed group, 

E (Yiτ |ki = 1) − E (Yi0|ki = 1) 
p3 = ,

E (Yi0|ki = 1) 

i = 1, · · · , N . For situations where τ is not fixed, p3 is defined at time s instead 

of at time τ . 

5. the residual variance of the response given the covariates, σ2 = V ar (Yij |Xij ). 

Note importantly that this parameter is not equal to the marginal, cross-sectional 

12 



variance of Y. It can be approximated by the variance of the response among the 

unexposed at baseline, a quantity that may be available from the literature or pi-

lot data, or if age is the time variable of interest, within a reasonably narrow age 

group. If only a marginal response variance is available over a range of ages 

and exposure levels, as will often be the case in epidemiology, the investigator 

can approximate the residual variance by multiplying it by the quantity 1 − R2 , 

where R2 is the assumed proportion of the marginal variance of the response 

variable that is explained by the model to be fit when the study is conducted 

(Snijders and Bosker, 1994), here one of models (2.3)-(2.8). Typically, in epidemi-

ology, R2 ranges from 0.10 to 0.30 or so. Under CMD, the parameter of interest 

is β2 = p1µ00, and under LDD, it is γ3 = η5 = p2p3µ00/τ or, when p2 = 0, it 

is γ3 = η5 = (1 + p1)p3µ00/τ . Hence, when CMD is of interest, the investigator 

needs to specify the alternative through two parameters, p1 and µ00, and when 

LDD is of interest, four parameters are needed, p2, p3, µ00, and τ . In our ex-

perience, investigators can readily provide values, or ranges of values, for these 

parameters, while it is difficult to directly obtain values for β2, γ3, or η5. It is even 

more difficult, if not impossible, to obtain a priori values for V ar(β̂2), V ar(γ̂3) or 

V ar(η̂5), since these quantities depend on σ2, along with other parameters. 

3 Power and Sample Size when either N or r is Fixed 

3.1 General case when Σi = Σ ∀i 

We assume that the covariance matrix is the same for all participants, i.e. Σi = Σ ∀i. 

Section 3.4 will consider a particular where this is not true. The general power formula 

associated with the test statistic, T , is "√ 
N 

��(c0B)
�� # 

HA − z1−α/2 , (3.1)Φ √ 
c0ΣBc 
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where (c0B)HA 
is the value of the regression parameter vector under the alternative 

(i.e. β2 for CMD and γ3 for LDD), α is the significance level, ΣB is defined in equa-

tion (2.1), and zp and Φ (·) are the pth quantile and the cumulative density of a standard 

normal, respectively. From (3.1), it is clear that power will increase as the number of 

participants, N , increases. From equation (2.1) we can see that the matrix ΣB depends 

both on the inverse of the residual covariance matrix, Σ−1, and the covariate matrices 

Xi. Let vjj0 be the (j, j0)th element of Σ−1, and let ⎛ ⎞ r r r rP P P P 
vjj0 jvjj0⎜ ⎟

j=0 j0=0 j=0 j0=0⎜ ⎟A = r r .r r⎝ P P P P ⎠
jvjj0 jj0vjj0 

j=0 j0=0 j=0 j0=0 

Then, under CMD, we show that c0ΣBc is (Appendix A.1.1) ⎛ 
r r

!2 
⎞ XX 

c 0ΣBc = ⎝s 2 det(A) + vjj0 V (t0)⎠ 
j=0 j0=0 (

r r
!�XX 

pe(1 − pe) vjj0 s 2 det(A) (3.2) 
j=0 j0=0 !2 �)−1Xr rX � � 

+ vjj0 1 − ρ2
e,t0 

V (t0) . 
j=0 j0=0 

If either V (t0) = 0, i.e. all participants enter the study at the same time, or ρe,t0 = 0, 

i.e. exposure and initial time are uncorrelated, this formula reduces to " !#−1r rXX 
c 0ΣBc = pe(1 − pe) vjj0 (3.3) 

j=0 j0=0 

(Appendix A.1). Under LDD, we have ! 
r rXX 

c 0ΣBc = vjj0 (pe(1 − pe))
−1 

j=0 j0=0 ⎡ ⎤−1 (3.4) 
r r

!2 � � XX ⎣s 2 det(A) + 1 − ρe
2 
,t0 

V (t0) vjj0 
⎦ 

j=0 j0=0 
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 (Appendix A.1.2). Under model (2.9), the B&W model, or model (2.10) we show that ! 
r rP P 

vjj0 

j=0 j0=0 
c 0ΣBc = 

pe(1 − pe)s2 det(A) 

(Appendix A.1.3), i.e. the formula for c0ΣBc is the same as in the LDD case when 

V (t0) = 0. Therefore, the results for LDD when V (t0) = 0 apply to model (2.9) and 

model (2.10) and will not be presented in a separate section. When the follow-up pe-

riod, τ , is fixed and the time points are equidistant, there are instances where c0ΣBc, 

under LDD and when V (t0) = 0, is the same for r = 1 and r = 2. On pure efficiency 

grounds, in these situations, it is never cost-effective to add only one additional mea-

sure. In Appendix A.4, we derive a condition on the matrix Σ that needs to hold for 

this situation to occur, and we show that this will be the case for the three covariance 

structures considered in this paper. Of course, this result assumes that the interaction 

term is linear, and does not consider that the third measure is needed to assess the 

validity of this assumption. This counter-intuitive result is due to the fact that with 

equidistant points, the additional measure would be taken at half the follow up pe-

riod, which is the mean of the time vector. This is similar to the fact that, in simple 

linear regression, adding an observation whose value for the explanatory variable is 

the explanatory variable mean produces no change on the variance of the slope. 

The power formula depends on N , r and s, producing a discrete three-dimensional 

surface of constant power. Fixing r and s, the formula for the required sample size in 

N to achieve a pre-specified power π is � �2 
(c0ΣBc) zπ + z1−α/2 

N = . (3.5)
(c0BHA )

2 

For some parameters, namely pe, s, V (t0) and ρe,t0 , their effect on c0ΣBc, and by virtue 

of (3.1) and (3.5), on power and sample size with r fixed, can be derived for a general 

covariance structure. Unlike randomized clinical trials, in observational studies, pe 

is rarely 0.5, which is the value of pe that maximizes power. For other values of pe 
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Figure 2: Ratio of required sample sizes (SSR) to achieve the same power comparing � � 
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the sample size obtained for pe = 0.5 needs to be multiplied by 0.52/ (pe(1 − pe)). For 

example, for pe = 0.2 and r fixed we need 56% more participants to achieve the same 

power than for pe = 0.5, and for pe = 0.1, the sample size is multiplied by 2.7. It can 

also be derived from equations (3.2) and (3.4) that, unless Σ is an explicit function of 

s (as in the DEX covariance structure models considered in section 3.3), increasing s 

reduces c0ΣBc and therefore increases power and reduces the required sample size for 

both CMD and LDD. However, if either V (t0) = 0 or ρe,t0 = 0, s does not play a role in 

the CMD case. The effect of V (t0), the baseline variance in the primary time scale, is 

different under CMD and LDD. Under CMD, as this parameter increases, keeping ρe,t0 

and all other parameters fixed, so does c0ΣBc and therefore power decreases, since 

δc0ΣBc 
> 0. 

δV (t0) 

The decrease in power will be larger as ρe,t0 departs from zero. When ρe,t0 = 0, in-

spection of (3.2) shows readily that the power is the same as that for the V (t0) = 0 

case (see (3.3)). Unlike the CMD case, under LDD, as V (t0) increases the power also 

increases, as is easily seen upon examination of (3.4), which depends on V (t0) in the 

denominator only. Increasing V (t0) increases the range of the regressor, t, which is 

known in simpler regression problems to increase the power of the study to detect a 

non-zero regression slope. Apparently, this result extends to interaction terms that are 

a function of a continuous variable, as well. The gain in power due to V (t0) is largest 

at ρe,t0 = 0, and it vanishes when ρe,t0 = 1 or ρe,t0 = −1, in which case power is equiv-

alent to the V (t0) = 0 case. It only makes sense to examine the effect of ρe,t0 when 

V (t0) > 0, since if V (t0) = 0 then ti0 is constant for all participants and ρe,t0 is zero. 

Figure 2 shows the gain in efficiency of having V (t0) > 0 compared to V (t0) = 0 for 

the CS case by showing the ratio of required sample size to achieve the same power in p
every case. The gains in efficiency can be very large for small r, large V (t0)/s, small 

ρ and small ρe,t0 . 

Sometimes, N is fixed and the interest is in finding the minimum r to achieve a certain 

power. This problem has not been examined in any detail in previous literature. It 
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may arise, for example, when an existing cross-sectional study is to form the basis of 

a new longitudinal one or when there are a fixed number of participants available, 

(e.g. nurses who returned a baseline questionnaire in 1989). For some covariance 

structures, an explicit formula for r as a function of N , π and s can also be obtained, 

and for other structures, r can be obtained only numerically. It is shown that the 

minimum r for fixed N is obtained when pe = 0.5 (Appendix A.5). Since no other 

global results are available, we will therefore consider this problem in the next section. 

Sections 3.2-3.4 provide power and sample size formulas for particular covariance 

structures. Then, for the two alternative hypotheses and for each covariance struc-

ture, we assess the effect of r and the covariance parameters on power. Two scenarios 

will be considered when studying the effect of r on power. First, the frequency of mea-

surements, s, is fixed. For example, participants might visit the clinic every 6 months, 

and increasing the number of repeated measures increases duration of follow-up, τ . 

In the second situation, the length of follow-up, τ , is fixed, for example, to 5 years, 

and increasing the number of repeated measures involves increasing the frequency of 

measurement, s. Formulas for r as a function of N , π and s or τ will be given when 

closed-form solutions exist. The effect of the covariance parameters on r will also be 

studied. 

3.2 Compound symmetry (CS) 

The simplest residual covariance structure that can be assumed for longitudinal data 

is compound symmetry. The residual covariance matrix is fully defined using two pa-

rameters: σ2 and ρ. The first one is the variance of the response given the covariates, 

which under CS is assumed to be constant over time, and was defined in section 2. 

The second parameter, ρ, is the correlation between two measurements from the same 

participant. Under CS, it is also the reliability coefficient, or intraclass correlation co-
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efficient, 
σ2 

between ρ = ,
σ2 + σ2 

w between 

where σ2 and σ2 are the between- and within-subject variance, respectively, and between w 

σ2 + σ2 = σ2 . Typically, ρ is unavailable at the time a study is designed, and w between 

power or sample size will be calculated over a range. Under CS, then, the covariance 

matrix is 

V ar(Yi|Xi) = Σ(r+1)×(r+1) = σ2 

⎛ ⎜⎜⎜⎝ 
1 ρ · · · ρ 

ρ 1 
. . . . . . 

. . . . . . . . . ρ 
ρ . . . ρ 1 

⎞ ⎟⎟⎟⎠ . 

3.2.1 CMD 

Table 1 shows the necessary terms to plug in to equation (3.1) to obtain the power 

formula for the case V (t0) = 0. Under this same scenario, the formula for power 

as a function of N and r was previously given by Bloch (1986). For the cases with 

V (t0) > 0 the equations do not simplify a great deal and interested readers should 

use formulas (3.2) or (3.4) directly. For any V (t0), the power to detect a difference 

increases as either N or r increase, but while by increasing N power can get arbitrarily 

close to one, by increasing r the maximum power that can be reached (when r → ∞) 

(Appendix A.6.1) is "p
N pe

Φ 

It has been shown that, when V (t0) 

# p(1 − pe

σ2ρ 

= 

) |β2| − z1−α/2 . 

0, as the correlation, ρ, increases, the power 

to detect a difference decreases (Hedeker et al., 1999). This is not necessarily the case 

when V (t0) > 0. For example, when N = 50, r = 2, σ2 = 1, V (t0) = 20 and ρe,t0 = 0.7, 

the variance for ρ = 0.8 is 0.29 and for ρ = 0.9 it is 0.25. Plugging in the correspond-

ing values in Table 1 to equation (3.5) one obtains an equation for sample size for 

V (t0) = 0. The equation for the minimum value of r which achieves a specified 

19 



20 

Ta
bl

e 
1:

 N
um

er
at

or
 a

nd
 d

en
om

in
at

or
 o

f t
he

 te
st

 s
ta

ti
st

ic
 T

 (
eq

ua
ti

on
 (2

.2
))

to
ob

ta
in

po
w

er
an

d
sa

m
pl

e
si

ze
fo

r
se

ve
ra

l
co

rr
el

at
io

n
st

ru
ct

ur
es

.F
or

LD
D

,i
ti

s
as

su
m

ed
he

re
th

at
 V

 (
t 0

 )
=

0.
 

Pa
tt

er
n,

 
Σ

c 0
 Σ

B
 c

 
(c

 0 B
) H

A
 

Fi
xe

d 
s 

Fi
xe

d 
τ 

(1
) 

(1
) 

C
M

D
, 

C
S 

σ
 2 (

1 
+

 r
ρ
) 

σ
 2 (

1 
+

 r
ρ
) 

p
 e (

1 
−

 p
 e )

(r
 +

 1
) 

p
 e (

1 
−

 p
 e )

(r
 +

 1
) 

β
 2 

=
 p

 1 µ
0
0

 

(2
) 

(2
) 

σ
 2 (

1 
+

 ρ
 s )

 
σ

 2 (
1 

+
 ρ

 τ/
r 
) 

A
R

(1
) 

p
 e (

1 
−

 p
 e )

(1
 +

 r
 +

 ρ
 s 
−

 r
ρ

 s )
 

p
 e (

1 
−

 p
 e )

(1
 +

 r
 +

 ρ
 τ/

r 
−

 r
ρ

 τ/
r 
) 

(3
) 

(3
) 

LD
D

, 
C

S 
12

σ
 2 (

1 
−

 ρ
) 

12
σ

 2 (
1 
−

 ρ
)r

 
2

 
p

 e (
1 
−

 p
 e )

 s
r 
(r

 +
 1

)(
r 

+
 2

) 
p

 e (
1 
−

 p
 e )

 τ
 2 

(r
 +

 1
)(

r 
+

 2
) 

p
 2 p

 3 µ
 00

 
γ

 3 
=

 
τ 

�
� −1 

(4
) 

�
� −1 

(4
) 

2
 

12
σ

 2 
(1

 −
 ρ

 2τ
/
r 
) r

τ 2
 

12
σ

 2 
(1

 −
 ρ

 2s
 ) 

r
s 

p
 e (

1 
−

 p
 e )

 
p

 e (
1 
−

 p
 e )

 
A

R
(1

) 
2

 ρ
 τ/

r 
+

(r
 −

 2
)(

r 
−

 1
)ρ

 2τ
/
r
)

(2
 +

 r
(r

 +
 3

) 
+

 8
ρ

 s 
−

 2
r 2

 ρ
 s 
+

(r
 −

 2
)(

r 
−

 1
)ρ

 2s
 ) 

(2
+

 r
(r

 +
 3

) 
+

 8
ρ

 τ/
r 
−

 2
r 

�
� 

�
� 

12
σ

 2 (
1 
−

 ρ
 t 0

 ) 
12

σ
 2 (

1 
−

 ρ
 t 0

 ) 
s 2

 p
 e (

1 
−

 p
 e )

 
τ 2

 p
 e (

1 
−

 p
 e )

 
R

S 
� 

�
�

� (5) 
� 

�
�

� (5) 
1

+
 

ρ
 b 1

 ,s
,r̃

1 
r 

+
 

ρ
 b 1

 ,τ
,r̃

r̃

r(
r 

+
 1

)(
r 

+
2)

 
1 
−

 ρ
 b 1

 ,s
,r̃

r̃(
r̃ 

+
 1

)(
r̃ 

+
2)

 
(r

 +
 1

)(
r 

+
2)

 
1 
−

 ρ
 b 1

 ,τ
,r̃

(r̃
 +

 1
)(

r̃ 
+

 2
) 

(1
) 

(B
lo

ch
, 1

98
6)

(2
) 

A
pp

en
di

x
A

.6
.3

(3
) 

(D
ig

gl
e 

et
 a

l.,
20

02
;D

aw
so

n,
19

98
;F

ri
so

n
an

d
Po

co
ck

,1
99

7;
H

ed
ek

er
 e

t 
al

.,
19

99
;K

ir
by

 e
t 

al
.,

19
94

;J
un

g
an

d
A

hn
,2

00
3;

Yi
an

d
Pa

nz
ar

el
la

, 2
00

2)
(4

) 
A

pp
en

di
x

A
.6

.4
(5

) 
(F

it
zm

au
ri

ce
 e

t a
l.,

20
04

; G
al

br
ai

th
an

d
M

ar
sc

hn
er

,2
00

2;
R

au
de

nb
us

h
an

d 
X

ia
o-

Fe
ng

,2
00

1;
Sc

hl
es

se
lm

an
, 1

97
3;

Yi
an

d
Pa

nz
ar

el
la

,
20

02
) 



particular power π, with N fixed under CS, CMD and V (t0) = 0 is � �2 
β2N pe(1 − pe) − zπ + z1−α/2 σ2 

r = � 2 �2 . (3.6) 
zπ + z1−α/2 σ2ρ − β2

2N pe(1 − pe) 

As noted before, the desired power cannot always be reached by increasing the num-

ber of repeated measures, so equation (3.6) will not always have a positive solution. 

The effect of the intraclass correlation, ρ, on r depends on the additional parameters. � �2If zπ + z1−α/2 σ2 > β2
2N pe(1 − pe), then r increases as ρ increases, otherwise r de-

creases as ρ increases (Appendix A.7.1). Our program also computes the required r 

for the case where V (t0) > 0. 

3.2.2 LDD 

Here, 

c 0ΣBc = 12σ2(1 − ρ)(1 + rρ) [Npe(1 − pe)(r + 1)]−1 n o−1 
r(r + 2)(1 + rρ)s 2 + 12(1 − ρ)(1 − ρ2 )V (t0) . (3.7)exp,t0 

For V (t0) = 0, this variance was given previously (Diggle et al., 2002; Dawson, 1998; 

Frison and Pocock, 1997; Hedeker et al., 1999; Kirby et al., 1994; Jung and Ahn, 2003; 

Yi and Panzarella, 2002) (Table 1). The power formula can be obtained plugging in 

(3.7) into (3.1). 

Power is a monotone function of r, and the limit of power when r goes to infinity 

is one, both when s is fixed and when τ is fixed (Appendix A.6.2). Thus, any pre-

specified power can be achieved by increasing the number of repeated measures. The 

effect of ρ on power depends on a complicated fashion on r, s, V (t0) and ρ2
e,t0 

. How-

ever, when all participants are observed at the same time points (V (t0) = 0), then 

increasing ρ will always increase power, the opposite effect that it has under CMD 

(Hedeker et al., 1999). 

Fixing r and s, an expression for the required number of participants, N , is readily 

obtained using (3.5) and (3.7). With N and s fixed, a closed form solution for r is not 
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available. Our program (see Section 6) can be used to calculate the required r for this 

case. As noted before, any pre-specified power can be reached by increasing r. If 

V (t0) = 0, then as the intraclass correlation, ρ, increases, the required r decreases, both 

when s is fixed and when τ is fixed (in the latter case, provided r > 1) (appendices 

A.5.2-A.5.3). When V (t0) > 0, the effect of ρ on r is not necessarily monotone. 

3.3 Damped exponential 

In this section, we consider a covariance structure that generalizes CS as a particular 

case. Following Munoz et al. (1992), the damped exponential (DEX) covariance matrix 

can be expressed as 

Σ = σ2 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 

1 
θ 

ρs ρ(2s)θ · · · ρ(rs)θ 

θ 
ρs 1 

θ 
ρs . . . . . . 

ρ(2s)θ θ 
ρs 1 

. . . ρ(2s)θ 

. . . . θ. . . . . . . ρs. 
ρ(rs)θ 

ρ(2s)θ 
ρs· · · θ 

1 

⎞ ⎟⎟⎟⎟⎟⎟⎠ . (3.8) 

Under this covariance model, ρ is now the correlation between two measures from 

the same participant separated by one time unit. The correlation between two con-

secutive measures is ρsθ and the correlation between two measurements of the same 

participant decreases as their separation in time increases. If the correlation between 

two measurements separated by s units, ρs, is known, the correlation per one unit is 

ρ = ρs
s 
−θ . The parameter θ ∈ [0, 1] controls the degree of attenuation of the correla-

tion over time. This covariance structure includes compound symmetry when θ = 0 

and AR(1) covariance structure when θ = 1. Thus, an investigator can vary the value 

of θ to determine the sensitivity of sample size and power calculations to departures 

of this sort from compound symmetry. For example, in a study on pulmonary func-

tion loss, the damping coefficient, θ, was 0.48, and in a study on CD4 cell count in 

HIV infected subjects, it was 0.35 (Munoz et al., 1992). Under DEX, c0ΣBc cannot be 

simplified to a simpler expression since the inverse of a DEX matrix is a complicated 

expression, and there is no general expression for all values of r. Design calculations 
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can be performed using our program. However, when θ = 1, that is, AR(1), a simple 

expression is obtained (Table 1). 

3.3.1 CMD 

As noted before, with DEX, formulas do not have closed form, but the computations 

can be performed with our program. The formula for the variance of β̂2 under AR(1) 

and V (t0) = 0 is given in Table 1. With N fixed, under DEX and CMD, power in-

creases as r increases. For small values of θ, we observed in some cases that by in-

creasing r to large values, the limit of the power when r tends to infinity was not one, 

as in the CS case. However, we observed in some cases that when the frequency of 

measurements, s, is fixed, as θ gets large the limit of power as r goes to infinity gets 

closer to one. With AR(1) covariance, we proved that the limit of power is one, so any 

pre-specified power can be reached by increasing the number of repeated measures 

(Appendix A.6.3). When the follow-up period, τ , is fixed, this limit of power is not 

one. For example, when V (t0) = 0 this limit is "p # 
N pe (1 − pe)(2 − τ log ρ) |β1|

Φ √ − z1−α/2 
2σ2 

(Appendix A.6.3). Regarding the influence of the covariance parameters, the power 

to detect an exposure effect under CMD decreases as the correlation ρ increases, as in 

the CS case, if V (t0) = 0; otherwise the relationship with ρ is not always monotone. 

When V (t0) = 0, power increases as θ increases provided s > 1 unit (if s < 1 unit 

the correlation between two measures separated by one unit will be larger under DEX 

than under CS). The effect of departures from CS, i.e. θ > 0, on power and sample 

size can be assessed by computing the asymptotic relative efficiency (ARE) of the test 

statistic under CS and under DEX. Since the numerator of the test statistic is the same 

in both cases, the ARE is equivalent to the variance ratio, which in turn is equivalent to 

the inverse of the ratio of required sample sizes to achieve the same power (Dawson 

and Lagakos, 1993). Figure 3 shows the percent reduction in the required sample 

23 



2 4 6 8 10 14

0.
0

0.
4

0.
8

ρρ == 0.8,    s == 1

r

S
S

R

2 4 6 8 10 14
0.

0
0.

4
0.

8

ρρ == 0.2,    s == 1

r

S
S

R

2 4 6 8 10 14

0.
0

0.
4

0.
8

ρρ == 0.8,    s == 6

r

S
S

R

2 4 6 8 10 14

0.
0

0.
4

0.
8

ρρ == 0.2,    s == 6

r

S
S

R

Figure 3: Ratio of required sample sizes (SSR) to achieve the same power compar-
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size at a fixed power, when the covariance structure is DEX compared to CS under 

CMD for fixed s and V (t0) = 0. Similar graphs are obtained for the fixed τ case. 

The reduction can be considerable and it is bigger when one takes many repeated 

measurements and the time between measurements s is large. 

The required r to achieve a power π when N is fixed can be computed with our pro-

gram. To assess the effect of θ on the required r, we computed it over a grid of values of 

the parameters, restricting to N ∈ [400, 2000], p1 ∈ [0.1, 0.2], σ/µ00 ∈ [0.5, 2], τ ∈ [2, 60] 

and V (t0) = 0. Similar to the effect of θ on power and number of participants, we 

observed in this region of the parameter space that the required r decreased as θ in-

creased, provided s > 1 unit. 

3.3.2 LDD 

The formula for ΣB does not have a general simple expression for all values of θ and r, 

and therefore neither do the formulas for power or for N with fixed r. For AR(1) and 

V (t0) = 0, Table 1 shows the formula for the variance of γ̂3 needed by equation (3.1) to 

obtain the power of a study. Under LDD and DEX, we observed through a grid search 

over a wide range of the design space that the power to detect an effect increases as 

r increases. We computed the limit of power when r goes to infinity for the AR(1) 

case. For fixed s, this limit goes to one (Appendix A.6.4). Therefore, any pre-specified 

power can be reached by increasing the number of repeated measures. For fixed τ , 

this is not the case, and for example when V (t0) = 0 the limit is (Appendix A.6.4) �p � 
N pe (1 − pe) [12 + τ (log ρ) (τ log ρ − 6)] |γ3|

Φ p − z1−α/2 . 
−24σ2 log ρ 

The effect of ρ and θ on power depend on each other and it is not always monotone, 

even when V (t0) = 0. We computed power for a grid of values for the parameters, 

restricting r 6 15 and s 6 6 units, and observed that when V (t0) = 0, as θ departs from 

0, the power starts to decline, but it can increase again when θ approaches 1 for large 

values of s and r (data not shown). However, in the range of values we investigated, 
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DEX and CS (θ = 0) for fixed values of r, ρ and θ, and under LDD with V (t0) = 0� � 
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power was maximized at θ = 0 (i.e. CS). When V (t0) > 0, power is not necessarily 

maximized at θ = 0 when V (t0)/s2 is large, around 20 or larger, and θ is near one, 

coupled with small values of r. Figure 4 shows the increase in the required number 

of participants to achieve a certain power when there is covariance decay compared 

to CS, for LDD with V (t0) = 0 and fixed s. For the case of fixed τ , a similar pattern 

was observed. The increase in Nas θincreases can be quite large when the intraclass 

correlation, ρ, is high and r is large. For example, if the true covariance is AR(1) (θ = 1) 

and ρ is large, one may have to enroll more than three times more participants than if 

the true covariance is CS, i.e. (θ = 0). 

The required r to achieve a power π when N is fixed can be computed with our pro-

gram. Computing the required r for several values of the parameters we observed 

that the effect of θ on r is not necessarily monotone. In general, r increases as θ de-

parts from 0, but it may decrease again as θ gets larger. 

3.4 Random intercepts and slopes 

In this section, we consider another generalization of CS. We consider the covariance 

structure obtained when an additional random effect (b1i) associated with time is as-

sumed (i.e. random intercepts and slopes, denoted RS), leading to model 

Yij = β0 + f(tij ; β1) + β2ki + b0i + tij b1i + eij 

under CMD and 

Yij = γ0 + f (tij , γ1) + γ2ki + γ3 (tij × ki) + b0i + tij b1i + eij 

under LDD, where f (tij , γ1) is a function of time that includes a linear term and is 

otherwise arbitrary. In mixed models notation, the residual covariance matrix is often 

written as Σi = ZiDZ
0 
i + σ2 I, where Zi contains a subset of columns of the design w

matrix for participant i, and D is the covariance matrix of the random effects (e.g. 
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Fitzmaurice et al. (2004), p. 199). Here, the matrix Zi contains a column of ones and 

the column of times for participant i, and � � 
σ2 

b0 
ρb0b1 σb0 σb1D = ,

σ2ρb0b1 σb0 σb1 b1 

where σ2 and σ2 are the variance of the random effect associated with the intercept b0 b1 

and slope, respectively, and ρb0b1 is the correlation between them. When there is only 

a random effect associated with the intercept, the matrix Zi contains only a column 

of ones, and the resulting matrix, Σi, follows a CS structure. Likewise, when σb
2 
1 

= 0, 

RS reduces to CS. If V (t0) = 0 then Σi = Σ, i.e. the covariance matrix is the same 

for all participants, as it was the case when CS or DEX was assumed, even when 

V (t0) > 0 for CS and DEX. The RS covariance structure is heteroscedastic, with the 

residual variance of the responses (the diagonal elements of Σ) assumed to change as 

a quadratic function of time, with positive curvature σb
2 
1 
. In addition, this covariance 

structure assumes that the correlation between repeated measures changes with time 

and with increasing duration between visits - in either scenario, it can either increase 

or decrease. When pilot data are available, the parameters of D can be estimated and 

used directly as inputs into our program to perform design calculations. 

Often, however, longitudinal pilot data are not available, and a more intuitive param-

eterization is needed so that investigators can propose plausible values on which to 

base designs. To make the parameters more intuitive, we defined σ2 = σ2 + σ2 as the t0 w b0 

residual variance at baseline (or at the mean initial time). Then, we define 

σ2 

ρt0 = + 
b0 

σ2σw 
2 

b0 

as the reliability coefficient at baseline (or at the mean initial time), i.e. the percentage 

of residual variance at baseline that is due to between-subject variation. One addi-

tional parameter is needed, to fix the between-subjects variance in slopes. Follow-

ing a parameterization proposed for characterizing the relative variability in slopes 

from several studies compared to their within-study variance in the context of meta-

analysis (Takkouche et al., 1999), we defined the slope reliability as the percentage 
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of variation in the estimated coefficient γ̂3 that is due to between-subjects variation. 

When s is fixed, we define ρb1,s,r̃ as the slope reliability with r̃ repeated measures, 

where r̃ is a hypothetical or trial value of r. When V (t0) = 0, this quantity is 
σb

2 
1 
s2r̃(r̃ + 1)(r̃ + 2) 

ρb1,s,r̃ = . 
12(1 − ρt0 )σ

2 + σ2 s2r̃(r̃ + 1)(r̃ + 2) t0 b1 

For the case of fixed τ , we define the equivalent quantity 
σb

2 
1 
τ 2(r̃ + 1)(r̃ + 2) 

ρb1,τ,r̃ = . 
12r̃(1 − ρt0 )σ

2 + σ2 τ 2(r̃ + 1)(r̃ + 2) t0 b1 

The variance matrix can now be expressed in terms of these new intuitive, parameters 

σt
2 
0 
, ρt0 ∈ [0, 1], ρb0b1 ∈ [−1, 1], and ρb1,s,r̃ ∈ [0, 1] or ρb1,τ,r̃ ∈ [0, 1]. In the case of fixed 

τ , the covariance matrix can be expressed as 

Σi = σ2 
t0 

(1 − ρt0 )I + Zi 

⎛ ⎜⎝ 
⎞ ⎟⎠Z0 

��r ! �� 12ρt0 (1−ρt0 )r̃ ρb1,τ,r̃ρt0 ρb0b1 τ2(r̃+1)(r̃+2) 1−ρb1,τ,˜ (3.9)r ,i 
12(1−ρt0 )r̃ ρb1,τ,r̃

τ2(r̃+1)(r̃+2) 1−ρb1,τ,r̃

and for the fixed s case, one just needs to substitute ρb1,τ,r̃ by ρb1,s,r̃ and τ by sr̃. If the 

value of r is known a priori, r̃ will take the value of r. Otherwise, for design problems 

where r is not fixed (i.e. when finding r for fixed N , or when finding (Nopt, ropt)), 

the investigator needs to provide the slope reliability together with a trial value of r̃

associated with it, and then find r or (Nopt, ropt). In the calculations that follow, r̃ will 

act as a constant. If the value of r that solves the design problem is different from the 

one used to define the initial ρb1,s,r̃ or ρb1,τ,r̃, the investigator should recalculate ρb1,s,r̃

or ρb1,τ,r̃ with the new value of r to ascertain that the resulting values of ρb1,s,r or ρb1,τ,r 

are realistic. Our software automatically recalculates ρb1,s,r or ρb1,τ,r with the value of 

r that is the solution to the design problem. In the figures shown in this paper and, 

otherwise, when grid searches were performed, we chose r̃ = 5 and ρb1,s,r=5 or ρb1,τ,r=5 

are used. 

3.4.1 CMD 

Formula (3.3) under RS and CMD results in a complex formula for c0ΣBc which we do 

not provide here. However, in practice, a RS correlation structure will be usually not 
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fitted under CMD. For particular cases, calculations can be performed with our pro-

gram by entering the intuitive parameters or by using formula (3.3) directly. Unlike 

the analogous CS and DEX scenarios, when V (t0) > 0, formula (3.3) cannot be used 

because it is based on all participants having the same covariance matrix Σ. When 

V (t0) > 0 under RS, Σi is different for each participant (equation (3.9)). We will still � � 
X0 iΣ

−1compute ΣB as E−1 
i as we did in section 2, but this calculation will now X Xi 

require correctly specifying the full distribution of (ki, t0i) and not just the first two 

moments. In this paper and in the software (section 6), we assume that t0 is normally 

distributed within each exposure group, with the same variance, V (t0), but a different 

mean that will depend on ρe,t0 , and that ki follows a Bernoulli with probability pe. We � � 
X0 iΣ

−1then compute E−1 
i by numerical integration (see Appendix A.8 for more X Xi 

details). We assessed the sensitivity of results to the normality assumption for t0 by 

comparing to results obtained with t0 assumed to be uniform, a four-parameter Beta 

with several values for the shape parameters and lognormal with several values of 

the shape parameter, with the mean and variance of each distribution matched to the 

mean and variance of the normal case, over a grid of values of the covariance parame-

ters. We found that the resulting variance depended on the distribution assumed, and 

depending on the values of the other parameters, the distributions we considered can 

provide variances that smaller or larger than the normal case, with no clear pattern. 

So, the results given in this paper for CMD, RS and V (t0) > 0 will rely on the times 

being normally distributed. Unlike the case where Σi = Σ , we found empirically 

that even when t0 is normally distributed, the value of pe that maximizes power is not 

necessarily 0.5 when ρe,t0 6= 0. 

The limit of the power when r goes to infinity and V (t0) = 0 is (Appendix A.6.5) ⎡ ⎤ p
N pe (1 − pe) |β1|⎣ ⎦Φ q − z1−α/2 . 
σ2 (1 − ρ2 )t0 

ρt0 b0b1 

The effect of the covariance parameters ρt0 , ρb0b1 , and ρb1,s,r=5 or ρb1,τ,r=1 on power, 

number of participants, and number of repeated measures is not monotone and de-
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pends upon the values of more than one parameter. Through a grid search, we found 

that for the same value of ρt0 , power can be either larger or smaller than in the CS case. 

Similarly, through a grid search, we found that the effect of V (t0) on power did not 

follow a monotone pattern throughout our grid search. 

3.4.2 LDD 

When V (t0) = 0, power does not depend upon the parameter ρb0b1 
. Table 1 shows 

the terms needed to compute power and number of participants (N ) for fixed r, using 

equations (3.1) and (3.5). These formulas are equivalent to those reported by Schles-

selman (1973), Raudenbush and Xiao-Feng (2001), Yi and Panzarella (2002), Galbraith 

and Marschner (2002) and Fitzmaurice et al. (2004). When V (t0) > 0, formula (3.4) 

cannot be used because it requires that the response of all participants have the same 

covariance matrix, Σ. As discussed above in the CMD case (section 3.4.1), under RS, 

when V (t0) > 0, Σi is different for each participant. In this paper and in the soft-

ware (section 6), to compute ΣB we assumed that t0 is normally distributed within 

each exposure group, with the same variance V (t0) and a different mean depending 

on ρe,t0 , and that ki follows a Bernoulli with probability pe. We then computed ΣB as � � 
E−1 X0 iΣ

−1 
X i Xi , by numerical integration (see Appendix A.8 for details). As is sec-

tion 3.4.1 for the CMD case, we compared the results assuming normality for t0 to 

results assuming other distributions. The resulting variances were not materially dif-

ferent from the normal case for symmetric or moderately skewed distributions, but 

were greater than the normal case in situations where the distribution of t0 was very 

skewed. Since our program would then provide underestimates of the true variance, 

if it is believed that t0 is severely skewed, it might make sense to use formulas with 

V (t0) = 0, which does not require assumptions on the distribution of t0 and appears 

to provide conservative estimates of the variance compared to the V (t0) > 0 case, as 

observed through the grid searches over all the distributions of t0 we studied. As in 

the CMD case, when Σi 6 that maximizes = Σ, we found empirically that the value of pe 
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� Figure 5: Ratio of required sample sizes (SSR) to achieve the same power comparing 
RS and CS (ρb1,τ,r=5� = 0) for fixed values of r, ρt0 and ρb1,τ,r and V (t0) = 0 under 
LDD SSR = NRS . The groups are ρb1,τ,r=5 = 0.1 (—), ρb1,τ,r=5 = 0.4 (- - -), and 

NCS 

ρb1,τ,r=5 = 0.6 (· · · · · · ). 

power is not necessarily 0.5 when ρe,t0 6= 0. 

Power is an increasing function of r. However, the limit of the power when r goes to 

infinity is not one, so there can be instances where a pre-specified power cannot be 

achieved by just increasing r. When V (t0) = 0 the limit is (Appendix A.6.6) ⎤ p⎡ 
N pe (1 − pe

12σt
2
0 
(1−ρt0 )r̃ 

⎢⎢⎣ ⎥⎥⎦ ) |γ3|
Φ − z1−α/2r � �

ρb1,τ,r̃

τ2(r̃+1)(r̃+2) 1−ρb1,τ,r̃

for the fixed τ case, and the equivalent expression substituting ρb1,τ,r̃ by ρb1,s,r̃ and τ 
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by sr̃ for the fixed s case. As in the CS case, the effect of ρt0 on power depends on 

other parameters in a complicated fashion, but when V (t0)= 0 increasing ρt0 always 

increases power. To examine the effect of ρb1,s,r̃ or ρb1,τ,r̃, that is, the effect of departures 

from compound symmetry towards a random slopes covariance structure, we calcu-

lated the ratio of sample sizes required to achieve the same power (ARE) comparing 

RS and CS. It is easily proven that more participants are required when either ρb1,s,r̃

or ρb1,τ,r̃ are greater than zero. Figure 5 shows the ARE as a function of ρb1,τ,r=5 when 

V (t0) = 0. It can be seen that the increase in number of participants can be quite large 

for large values of r and ρb1,τ,r=5. This is, for fixed σ2 , σ2 and σ2 , as r increases, the w b0 b1 

within-subjects variance component of V ar (γ̂3) is reduced, and it becomes very small 

for large values of r. Thus, the percentage of variance due to the between-subjects 

component is much greater, and the only way to reduce the between-subjects vari-

ance component is to recruit more subjects. When V (t0) > 0, we computed power 

over a grid of values of the other parameters, with restrictions r 6 15, s 6 6 units, and p p
V (t0)/s 6 10 for the fixed s case and τ 6 60 units and V (t0)/τ 6 10 for the fixed 

τ case. Over this wide region of the parameter space, the power decreased as either 

ρb1,s,r=1 or ρb1,τ,r=1 increased, even when V (t0) > 0. 

With N and s fixed, there is no closed-form solution for the minimum value of r to 

satisfy a specified power, but calculations to solve this non-linear equation can be 

performed with our program. As noted previously, there may be situations where 

the pre-specified power cannot be reached by simply increasing r. The effect of the 

covariance parameters on r in this setting is not monotone. However, when V (t0) = 0, 

we show that as the correlation ρt0 increases, the required r decreases (appendices 

A.5.4-5). Conversely, as ρb1,s,r̃ or ρb1,τ,r̃ increase, the required r increases, both when s 

is fixed and when τ is fixed (provided r > 1 for the latter case) (appendices A.5.6.1-2). 
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4 Optimal Allocation 

In planning a study, one often needs to consider cost. If the cost of recruiting a partici-

pant is c1 monetary units and the first measurement for each participant is κ > 1 times 

more expensive than the rest, then the total cost of the study is 

COST = N c1 (1 + r/κ) . (4.1) 

Then, when the budget is fixed at cost C, we need to choose the combination (N, r) that 

maximizes the power to detect the hypothesized effect, subject to this cost constraint. 

The imposition of the cost constraint determines a unique solution in (N, r) that 

solves the optimization problem, unlike in section 3, where a discrete two-dimensional 

’curve’ in (N, r) provides the desired power. Using a Lagrange multiplier, we maxi-

mize the power equation (3.1) with respect to r, subject to constraint (4.1). Once the 

optimal r is obtained, it can be plugged into equation (4.1) to obtain the corresponding 

optimal N . The constrained problem reduces to the following unconstrained problem 

(Appendix A.9) 

Min (κ + r) (c 0ΣBc) (4.2) 
r 

It turns out that the value of ropt that maximizes power subject to a fixed cost is the 

same one that minimizes the cost of a study subject to a fixed power (Appendix A.9). 

Of course, Nopt will be different, depending on the nature of the constraint. Since r 

is not fixed by design, we must consider the two different scenarios as above: when 

there is a fixed frequency of measurement (fixed s) and when there is a fixed follow-

up time (fixed τ ). A summary of the results of this section is given in Tables 2 and 

3. The exposure prevalence, pe, does not have any effect on ropt for any of the two 

constraints, and neither has an effect on Nopt for the cost constraint problem. For the 

power constraint problem, Nopt depends on pe as in the case of deriving N for fixed r 

described in section 3.1. 

Throughout section 4, when the analytical solutions could not be derived we com-
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puted the optimal r for a grid of values of the other design parameters, with the re-p
strictions r 6 15, κ 6 40and s 6 6 units and V (t0)/s 6 10 for the fixed s case, and p
τ 6 60 units and V (t0)/τ 6 10 for the fixed τ case. 

4.1 Fixed frequency of measurement, s 

In this section, the frequency of measurements is fixed, for example, to yearly visits. 

Then increasing the number of repeated measures, r, implies increasing the length 

of follow-up. If a correlation decay is assumed, e.g. under DEX, increasing r will 

keep the correlation between adjacent measurements the same, but the first and last 

observations will be less correlated. Under RS, increasing the length of follow-up can 

either increase or decrease the variances of successive responses and their correlations 

with each other. 

4.1.1 CMD 

For CMD under CS and V (t0) = 0, the optimal r is s 
(κ − 1)(1 − ρ) 

c1 (κ + ropt) 

ropt = 
ρ 

− 1, (4.3) 

and using the cost constraint (4.1), 

κ 
Nopt = COST. 

This result has been given in the context of cluster randomized trials (Raudenbush, 

1997; Cochran, 1977). As can be seen in figure 6, the greater the correlation between 

measurements of the same person, the smaller the optimal number of repeated mea-

sures; and the bigger the cost of the first measurement compared to the rest, the greater 

the optimal number of repeated measures. If all measurements have the same cost 

(κ = 1), the optimal design takes no repeated measurements and recruits as many 

participants as the cost constraint allows. Large values of κare needed to justify tak-

ing more than a small number of repeated measures. For the case where V (t0) > 0 
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Figure 6: Optimal number of repeated measures, ropt, as a function of ρ, under CMD, 
CS and V (t0) = 0 for different cost ratios (κ = 2 (——), κ = 5 (- - -), and κ = 20 
(· · · · · · )). 

38 



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015

ρρ
==

0.
2

θθ

ropt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015

ρρ
==

0.
5

θθ

ropt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015

ρρ
==

0.
8

θθ

ropt

s
==

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015

ρρ
==

0.
2

θθ

ropt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015
ρρ

==
0.

5

θθ

ropt
s

==
6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

051015

ρρ
==

0.
8

θθ
ropt

39 

Fi
gu

re
 7

: O
pt

im
al

 r
 a

s
a 

fu
nc

ti
on

 o
f θ

 u
nd

er
D

EX
,C

M
D

,fi
xe

d
fr

eq
ue

nc
y

of
m

ea
su

re
m

en
t s

 a
nd

V
 (
t 0

 )
=

0,
 fo

r 
r 
≤

 1
5 

an
d 

di
ff

er
en

t c
os

t r
at

io
s 

(κ
 =

2 
(—

—
),

κ
 =

5 
(-

--
),

an
d 

κ
 =

 2
0 

(·
··
··
· )

). 



and ρe,t0 6 0, we computed the optimal r for a range of values of the other design = p
parameters and observed that the effect of V (t0)/s on ropt was not monotone. In p
general, ropt increased as V (t0)/s increases, but it decreased again for large values p
of V (t0)/s, especially for cases with small κ. 

With DEX covariance structure, there is no closed-form solution for the optimal (N, r). 

Computing the optimal r for a grid of values of the other design parameters, we ob-

served that the optimal r was larger for DEX than for the compound symmetry case 

(θ = 0), the remaining parameters being equal. Figure 7 shows ropt as a function of θ 

for several cases with V (t0) = 0. The effect of V (t0) > 0 was very similar to its effect in p
the CS case, with ropt increasing with V (t0)/s but decreasing again for large values p
of V (t0)/s. 

With RS covariance structure, there is no closed form solution for the optimal (N, r). 

We computed the optimal design for a grid of combinations of the other parameters. 

Few patterns appeared. The optimal r increased as κ increased, but the effects of ρt0 , 

ρb1,s,r=5, ρb0b1 and V (t0) strongly depended on values of the other parameters. Calcu-

lations for specific situations can be performed with our program. 

4.1.2 LDD 

Under LDD, and with fixed frequency of measurements, V (t0) = 0 and CS, it is always 

advisable, in terms of maximizing the power subject to cost constraint, to choose r as 

large as possible, regardless of κ (Appendix A.10.1). In contrast, with V (t0) > 0 and 

CS, under LDD, there are situations where choosing r as large as possible is not the 

optimal design. We computed the optimal r for a grid of combinations of the other 

parameters. The optimal was r = 15 for almost all cases investigated, except for a few p
combinations characterized mainly by large values of V (t0)/s (close to 10) and small 

ρe,t0 . Using our program, (Nopt,ropt) can be obtained for specific cases. 

For DEX, we computed the optimal r over a grid of values of the parameters. We 
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Figure 8: Optimal number of repeated measures, ropt, under LDD and RS for fixed 
frequency of measurement assuming V (t0) = 0 as a function of ρb1,s,r=5 for different 
cost ratios (κ = 2 (—), κ = 5 (- - -), and κ = 20 (· · · · · · )). 
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observed that, under DEX and V (t0) = 0, we end up choosing the maximum r (15 in 

our case), which agrees with the CS case. However, when V (t0) > 0, there were cases 

where choosing r as large as possible did not give the highest power design at a fixed p
cost, in particular for large values of V (t0)/s (close to 10), small values of κ, large 

values of ρ and small ρe,t0 . 

RS behaves differently than CS and DEX since the length of follow-up has an effect on 

the variance of the observations. When V (t0) = 0, for a given κ, s and ρb1,s,r̃ we show 

in Appendix A.10.2 that the optimal r solves the equation � 
2κ = ropt −(3 + 2ropt)r̃(r̃ + 1)(r̃ + 2) � 

ρb1,s,r̃
+ (ropt + 1)2(ropt + 2)2 

1 − ρb1,s,r̃� �−1� � 
22 + 6ropt + 3ropt r̃(r̃ + 1)(r̃ + 2) . 

Figure 8 shows the optimal r as a function of κ, and ρb1,s,r=5 when V (t0) = 0. The opti-

mal r is smaller than for CS, where ρb1,s,r=5 = 0, and it decreases as ρb1,s,r=5 increases. p
When V (t0) > 0, with RS, the optimal r, ropt, depends additionally on V (t0)/s, ρb0b1 

and ρe,t0 . We computed ropt for a grid of values of the other parameters. Within the 

range of the parameter space investigated, the optimal r decreased as either ρb1,s,r=5 or p
V (t0)/s increased, i.e. less repeated measures and more participants were needed 

as the variation of slopes between participants increased and as the variance of the 

baseline time variable increased. For specific cases, ropt can be computed with our 

program. 

4.2 Fixed follow-up period, τ 

Under this scenario, increasing r involves increasing the frequency of measurements 

during a fixed time period, τ . The interval between measurements, s, varies in this 

setting. 
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4.2.1 CMD 

For CMD under CS and V (t0) = 0, the problem is equivalent to the fixed frequency of 

measurement setting, since the correlations are not affected by the duration of follow-

up. Therefore, the optimal r is given by equation (4.3). When V (t0) > 0 and ρe,t0 6= 0, 

we computed the optimal r for a grid of values of the other parameters and observed p
that V (t0)/τ only changed ropt for large values of ρe,t0 , and in that case the pattern is p
similar to the fixed s case, where ropt increased as V (t0)/τ separates from zero, but p
it decreased again for large values of V (t0)/τ . 

When there is a correlation decay (θ > 0), we computed ropt for a grid of values of 

the other parameters and found instances where the optimal r was smaller than in 

the CS case when τ was small and bigger than the CS case when τ was large (data √ 
V (t0)not shown). Increasing 
τ produced no changes in ropt in most situations. For 

RS, we investigated the dependency of ropt as a function of the parameters of the RS 

covariance structure using a grid of values of the other parameters. Few patterns 

appeared. We observed that the optimal r increased with κ, the optimal being r = 1 

or r = 2 when κ = 2, and ranging from 1 to 15 depending on the values of the other 

parameters when κ = 40. Figure 9 shows the relationship between ropt and ρb1,τ,r=5 for 

several values of ρt0 and κ and V (t0) = 0. The effects of ρt0 strongly , ρb1,τ,r=5 and ρb0b1 √ 
V (t0)depended on the values of all other parameters. We observed that increasing 
τ p

reduced ropt, whith ropt being one for most cases with V (t0)/τ > 3. 

4.2.2 LDD 

Under CS with V (t0) = 0, then ropt = 1 if κ < 5. Recall that when LDD is the alter-

native hypothesis of interest, we need at least one repeated measure to identify the 
2(κ+1)parameters. For κ > 5, ropt is not one. Any combination of (N, r) where r > 

κ−5 

would improve the power achieved by the combination where r = 1. The optimal 

would involve taking r as large as possible, even though fewer participants would be 
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2(κ+1)Figure 10: Function f(κ) = 
κ−5 . For a particular κ, r needs to be greater than this 

function in order to have more power (for a given cost) than the power of the design 
with r = 1 (under LDD and CS). 
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recruited (Appendix A.10.3). If, for example, κ = 10 then with r > 5 measures one 

would have more power for the same cost than with r = 1 (figure 10). Note that large 

values of κ are needed to justify taking r = 3, 4 or 5, values that are common in many 

studies. 

When V (t0) > 0 under CS covariance structure, we computed the optimal r over a grid 

of values of the other parameters. We found that when V (t0) > 0, ropt can be greater 

than one even when κ < 5. In addition, the optimal r rarely reached 15 except for small p
values of V (t0)/τ coupled with large κ. So, for most of the combinations considered, 

the optimal r was usually an intermediate values between one and fifteen. The effect p
of V (t0)/τ on ropt was not monotone – in some cases it was found to increase ropt, 

and in others to decrease it. Figure 11 when θ = 0 exemplified this for particular 

values of the parameters. For particular cases, the optimal (N, r)can be obtained with 

our program. 

Under DEX covariance structure, with V (t0) = 0, the optimal value of r that maxi-

mizes the power for a given cost also has a complicated expression. We computed 

the optimal over a grid of possible values of the other parameters, and observed that 

compared to CS, the optimal r was smaller when θ > 0 (figure 12). So, larger values of 

κ are needed to justify taking the same number of repeated measures as would opti-

mize the design under CS. We found in our grid search that the optimal r increased as 

τ or κ increased, and when ρ decreased. However, the effect of θ was found to not be 

monotone for large values of τ (Figure 12). The optimal r and N for different values 

of the parameters can be computed with our program. 

Under DEX and V (t0) > 0, we computed the optimal design for a grid of values of the 

other parameters. We found that the effect of V (t0) on ropt was not monotone – it both 

increased ropt and decreased it, depending on values of the other parameters. Figure 11 

exemplifies some cases for particular values of the parameters. When V (t0) > 0, the 

optimal r was not always smaller than in the otherwise analogous situation but under 
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CS (i.e. when θ = 0). Our program can compute the optimal value for given values of 

the parameters. 

Under RS covariance with V (t0) = 0 involves the following condition must be met for 

the optimal r to be greater than one, 

ρb1,τ,r̃ < [−2(κ + 1) + (κ − 5)r] (r̃ + 1)(r̃ + 2) � �−1 

6r̃(r + 1)(r + 2) + [−2(κ + 1) + (κ − 5)r] (r̃ + 1)(r̃ + 2) 

(Appendix A.10.4). Noting that this can only be true when the right hand side of the 
2(κ+1)inequality is positive, we can deduce that κ > 5 and r > 

κ−5 , as in the correspond-

ing CS case (Appendix A.10.4). When the condition is met, then the optimal r is the 

solution to the following equation � � 
ρb1,τ,r̃

κ = ropt(4 + 3ropt)(r̃ + 1)(r̃ + 2) + r̃(ropt + 1)2(ropt + 2)2 

1 − ρb1,τ,r̃� �−1 
2(ropt − 2)(r̃ + 1)(r̃ + 2) . 

Otherwise, the optimal is r = 1. Regions of the design space can be calculated for 

which at given values of ρb1,τ,r=5 and κ, (Nopt, ropt) provides a design with more power 

than the design which takes r = 1. The shaded regions in Figure 13 show these regions 

in some examples. Note that if, for example, κ = 10 and ρb1,τ,r=5 = 0.3, there are no 

values of r that improve the power over that attained at r = 1. The optimal r is also 

plotted in Figure 13. For example, when κ = 20 and ρb1,τ,r=5 = 0.3, the optimal r is 

greater than 15. Our program can calculate the optimal value for a given κ and ρb1,τ,r̃. 
√ 

V (t0)With RS and V (t0) > 0, the optimal design depends on 
τ , ρb0b1 and ρe,t0 as well. 

We computed the optimal design for a grid of values of the other parameters. As 

ρb1,τ,r=5 increased, ropt decreased, i.e. less repeated measurements and more partici-p
pants were needed. The effect of V (t0)/τ on ropt was observed to not be monotone – 

it was found to both increase ropt and decrease it, depending on other values of the pa-p
rameters. Figure 14 shows how ropt varies as a function of V (t0)/τ in some particular 
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Figure 13: Optimal r (dashed line) and values of r that improve the power attained 
with r = 1 for a fixed cost and same κ and ρb1,τ,r=5 (shaded area) under LDD, RS and 
fixed follow-up time, τ 
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cases cases. When V (t0) > 0, the optimal can be greater than one even when κ < 5. 

Our program can compute the optimal value for given values of the parameters. 

5 Illustrative Example 

To illustrate the methods used in this paper, we consider the subset of the Vlagtwedde-

Vlaardingen study (Rijcken et al., 1987; Van der Lende et al., 1981) that was made avail-

able on the website of a recent textbook on longitudinal analysis (Fitzmaurice et al., 

2004) (http://biosun1.harvard.edu/˜fitzmaur/ala/) as a pilot study, and 

use it as the basis of an investigation of options for the design of an expanded longitu-

dinal study of the effect of smoking on lung function. Briefly, these pilot data consist 

of 133 men and women from rural Vlagtwedde, The Netherlands, aged 36 or older at 

baseline, who were followed every three years for up to 19 years for evaluation of their 

lung function, through spirometric measurement of forced expiratory volume (FEV1). 

The exposure of interest, current smoking at baseline, was defined as smoking at least 

one cigarette per day at baseline. 

First, as discussed previously, the design of longitudinal study depends on up to nine 

parameters. To get a realistic idea about the likely range of design input parameters 

that apply to this study population and its anticipated extension, we fitted a linear 

model for FEV1 as a function of smoking, time on study (in years) and the interaction 

of smoking with time to the pilot data, using CS, DEX and RS covariance structure as-

sumptions. The estimated coefficients of this model assuming a DEX covariance struc-

ture model were γ̂0 = 3.5086, the average FEV1 (liters) at baseline among non-smokers, 

γ̂1 = −0.2760, the average yearly rate of decline of FEV1 (liters) among non-smokers, 

γ̂2 = −0.0337, the average difference in FEV1 (liters) at baseline between smokers and 

non-smokers, and γ̂3 = −0.0045, the average difference in the yearly rate of decline of 

FEV1 (liters) of smokers compared to non-smokers, corresponding to µ00 = 3.5086, the 

average FEV1 (liters) at baseline among non-smokers, p1 = −7.86%, the percent differ-
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ence in FEV1 (liters) between smokers and non-smokers at baseline, p2 = −18.2%, the 

percent change FEV1 (liters) from baseline to end of follow-up among non-smokers, 

and p3 = 13.35%, the percent difference between the change FEV1 (liters) from baseline 

to end of follow-up in smokers and non-smokers. 

Getting a good estimate of the residual variance from the model of interest at the de-

sign stage of a study is not easy. In order of increasingly likely accuracy, we suggest 

directly estimating σ2 from longitudinal pilot data when available. Here, the data 

are available, and the estimated value of σ2 from the regression of FEV1 on baseline 

smoking status, time in years from start of the study, and their cross-product, was 

0.3214 and 0.3179 under assumptions of CS and DEX, respectively. Under RS, σt
2 
0 

was 

0.3400. When longitudinal pilot data are not available, as will typically be the case, 

we suggest using cross-sectional pilot data if available. Here, the estimated value of 

σ2 among the exposed only (since the majority are exposed) was 0.3403. If the time 

metameter for analysis is time since start of study, this value of the residual variance 

is likely to generate accurate design calculations. If the time metameter for analysis 

varies at the start of study, e.g. if time is age, it is best to estimate the residual variance 

over a restricted age range. The pilot data available do not permit estimation of the 

variance over a restricted age range - hence, in this example, the option is not avail-

able, as it often would not be in practice. Often at the design stage, variance values 

such as those discussed just above, over presumably comparable subjects but over a 

range of times, however time may be defined, and perhaps pooled across exposed 

and unexposed subjects, may be all that is available, from the literature or from pilot 

data. Here, the variance of FEV1 using all of the measurements for all of the available 

subjects (N = 133) was 0.3837, and the analogous value given in the publication for 

1607 subjects, pooled across gender, was 0.3740. Then, conservatively assuming that 

the ultimate model will explain no more than 10% of this total variation, the investiga-

tor may use a value for σ2 of 0.3837 × 0.90 = 0.3453, nearly identical to the analogous 

value obtained from the fit of the model to the pilot data. For the published value of 
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the marginal variance, the projected value for the residual variance is 0.3366, also very 

similar to that obtained directly from the pilot data and to the one obtained from the 

model fit to the pilot data. When N must be found subject to fixed power and a fixed 

number of measurements per person (r), it can be seen from equation (3.5) that the 

percent over- or under-estimation of N is directly proportional to the percent over- or 

under-estimation of σ2. When power needs to be calculated as a function of (N, r) or 

r must be found subject to fixed power and a fixed number of participants (N ), we 

can see from equations (3.1) and (3.6) that the effect of over- or under-estimation of σ2 

on design cannot be easily described. Interestingly, (Nopt, ropt)does not depend upon 

σ2 when the design is constrained by a minimum acceptable power, only when it is 

constrained by a maximum cost. 

Values for other parameters characterizing the covariance structure are needed as well 

before design calculations can be conducted. If no pilot data are available to estimate 

them, it is suggested that sensitivity analysis be conducted over what is believed to 

be a realistic range. Here, we were able to estimate these values from the available 

longitudinal pilot data. Under the assumption of CS, ρ was 0.857 and 0.896 under 

DEX, where θ was 0.18. Assuming RS, ρt0 , was 0.877; ρb1,s=3,r=6, the slope reliability 

for r = 6 measurements per participant was 0.36, indicating a moderate amount of 

between-subjects variation in slopes; alternatively, ρb1,τ =18,r=1, the slope reliability at 

the end of follow-up with r = 1, was 0.27; and ρb0,b1 was -0.32. These RS covariance pa-

rameters correspond to σ2 = 0.0418, σ2 = 0.2982,σ2 = 0.000095 and σb0,b1 = −0.0017.w b0 b1 

Finally, most of these pilot study participants were smokers, i.e. pe, was 0.79, and the 

published value of the standard deviation of age at entry into the study was 10 years p
( V (t0)) (Rijcken et al., 1987). 

In Table 4, we show the minimum detectable effects obtained for these trial parame-

ter values under CMD and LDD for r = 6. In all the tables given in this section, we 

assumed, for the RS covariance structure, that t0i is normally distributed. As noted in 

Section 3.4.2, we found that unless the distribution of t0i was extremely skewed, re-
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Table 4: Minimum detectable effects in the pilot study (N = 133, r = 6, τ = 18, 
pe = 0.79, µ00 = 3.5086, p2 = −18.2%, V (t0) = 100,ρe,t0 = 0). 

Correlation CMD (p1) LDD (p3) 
Power 80% 90% 80% 90% 
CS1 ± 9% ± 10% ± 22% ± 25% 
DEX2 ± 9% ± 10% ± 26% ± 30% 
RS3∗ ± 9% ± 10% ± 26% ± 30% 

1 σ2 = 0.3214, ρ = 0.857 
2 σ2 = 0.3179, ρ1 = 0.896, θ = 0.18 
3 σt

2 
0 

= 0.3400, ρt0 = 0.877, ρb1,s,r=6 = 0.36, ρb0,b1 = −0.32 
∗ t0 assumed normally distributed with variance V (t0) 

Table 5: Minimum number of participants (N ) to detect a 10% effect (p1 = 0.1 or 
p3 = 0.1) with 90% power in the pilot study (r = 6, τ = 18, pe = 0.79, µ00 = 3.5086, 
p2 = − 18.2%). 

V (t0) = 0 V (t0) = 100 
CMD LDD CMD LDD 

ρe,t0 0 0.8 0 0.8 0 0.8 0 0.8 
CS1 151 151 918 918 151 155 863 897 
DEX2 144 144 1330 1330 144 152 1215 1286 
RS3∗ 144 144 1305 1305 147 160 1260 1289 

1 σ2 = 0.3214, ρ = 0.857 
2 σ2 = 0.3179, ρ = 0.896, θ = 0.18 
3 σt

2 
0 

= 0.3400, ρt0 = 0.877, ρb1,s,r=6 = 0.36, ρb0,b1 = −0.32 
∗ t0 assumed normally distributed with variance V (t0). 
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sults would be quite insensitive to departures from this assumption. Under CMD, the 

minimum detectable effect was the same for the three alternate covariance structures, 

but under LDD, the patterns that allow for the covariance structure to vary with time 

on study had lower power and larger minimum detectable effects than under CS, as 

discussed in sections 3.3.2 and 3.4.2. We repeated the table assuming ρe,t0 = 0.8 and 

obtained almost identical results with the minimum detectable effects slightly higher. 

Suppose one wants to design a study with seven repeated measures (r = 6) taken 

every three years (s = 3). Using the parameters estimated from the pilot data, we 

computed the number of participants (N ) needed to detect a 10% difference in the 

parameter of interest (p1), the percent difference in exposure group means which is 

constant over time, and p3, the percent difference in the exposure group slopes char-

acterizing their change over time, with 90% power, for values of V (t0) of zero and 

100 and values of ρe,t0 of zero and 0.8. Results are presented in Table 5. As expected, 

under CMD we need fewer participants when we have departures from CS, while 

under LDD departures from CS lead to having to recruit more participants. The de-

partures from CS in these data did not appear to be large (e.g., θ = 0.18), but even this 

degree of decay had a considerable influence on the required sample sizes. This ex-

ample suggests that it will often be important for investigators to consider even small 

departures from CS in their design calculations, and report the maximum departures 

from CS they are prepared to accommodate in their proposed study. We can also see 

in Table 5 a small increase in sample size under CMD when both V (t0) and ρe,t0 are 

greater than zero. On the other hand, larger V (t0) lead to reduction in sample under 

LDD, which is going to be maximum when ρe,t0 = 0. 

Now suppose that neither N nor r are fixed by design and we have a budget of 15,000 

monetary units (denoted without loss of generality as $15,000) for CMD and $100,000 

monetary units for LDD, the cost of recruiting each participant and recording their first 

measurements is $80 and the subsequent measures are κ times cheaper. We must dis-

tinguish between two possible situations to proceed here: one in which the frequency 
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of measurements is fixed, and the other, in which the follow-up time is fixed. We re-

stricted consideration for reasons of feasibility to a maximum of r = 10 for the fixed 

frequency case, which would be equivalent to 30 years of follow-up, and to r = 18 for 

the fixed follow-up case, corresponding to one measurement per year. The optimal 

(N, r) under CMD when κ = 5 to detect p1 = 10% was (N, r) = (187, 0) for all three 

covariance structures, i.e. the most powerful design for the least amount of money is 

a cross-sectional study that recruits as many participants as possible. With κ = 20, the 

optimal design took one post-baseline measurement from 178 participants, and was 

again invariant to assumptions about the covariance structure. We obtained a small 

ropt even for large values of κ because the correlation between measurements on the 

same participant is large, as seen previously in Figure 6 with CS. For LDD and s = 3, 

the optimal design to detect a 10% difference between exposure group slopes was at 

the maximum feasible r, here, r = 10, with N = 146 for all three covariance structures 

considered, fixed at the same values of the covariance parameters as in Table 5. At 

this fixed cost of $100,000, the power for (Nopt, ropt) = (10, 416) differed depending 

on the assumed covariance structure, with a power of 99% for CS, 88% DEX with a 

small dampening coefficient (θ = 0.18) and 71% for RS with a 69% slope reliability 

with r = 10 (ρb1,s=3,r=10). With ropt=10 and s = 3, the study is planned to be of 30 years 

duration and in many cases would not be a realistic choice. The optimal combination 

of r and N was the same when we assumed V (t0) = 0, and the resulting power was 

only slightly smaller. 

Table 6 shows the optimal (N, r) under LDD when the duration of the study is fixed 

at τ = 18, for κ = 5 and κ = 20 and for V (t0) = 0 and V (t0) = 100 and ρe,t0 = 0. 

We repeated the results with ρe,t0 = 0.8 and they were almost identical. The optimal 

design for κ = 5 was at ropt = 1, as we observed in section 4.2.2 for κ 6 5, and this was 

independent of V (t0), which only changed slightly the resulting power. For κ = 20, the 

optimal design in (N, r) varied considerably depending on the covariance structure, 

and within the same covariance structure it varied depending on the value of V (t0). 
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Table 6: Optimal design (Nopt, ropt) to maximize power for a study to detect a 10% 
difference in slopes (p3 = 10%) for fixed τ = 18 under LDD at a cost of no more than 
$100,000 with c1 = $80 and ρe,t0 = 0. 

κ = 5 κ = 20 
(N, r) Power (N, r) Power 

V (t0) = 0 (1041, 1) 79% (657, 18)4 98%CS 
V (t0) = 100 (1041, 1) 83% (657, 18) 99% 
V (t0) = 0 (1041, 1) 73% (925, 7) 79%DEX 
V (t0) = 100 (1041, 1) 77% (1190, 1) 82% 
V (t0) = 0 (1041, 1) 70% (757, 13) 82%RS 
V (t0) = 100* (1041, 1) 72% (781, 12) 83% 

1 σ2 = 0.3214, ρ = 0.857 
2 σ2 = 0.3179, ρ = 0.896, θ = 0.18 
3 σ2 = 0.3400, ρt0 = 0.877, ρb1,s,r=6 = 0.36, ρb0,b1 = −0.32t0 
4 Note that with r = 18, one measurement will be taken every year, three 
times more often than in the pilot study 
∗ t0 assumed normally distributed with variance V (t0). 
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Figure 15: Power as a function of r under LDD for p3 = 10%, fixed τ = 18 , V (t0) = 100, 
ρe,t0 = 0 and a cost restriction of $100,000. The values of the parameters are, for CS, 
σ2 = 0.3214, ρ = 0.857; DEX, σ2 = 0.3179, ρ = 0.896, θ = 0.18; RS, σt

2 
0 

= 0.3400, 
ρt0 = 0.877, ρb1,s,r=6 = 0.36, ρb0,b1 = −0.32. The lines indicate CS (——), DEX (- - -), and 
RS (· · · · · · ). 
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Figure 15 shows how power varied as a function of ropt (and Nopt) for fixed study cost 

and different values of κ. When κ is large, the optimal combination (N, r) strongly 

depended on the covariance structure, and combinations that achieved a high power 

for one covariance structure were underpowered for others. 

6 Software 

Although others have provided public access software for longitudinal study design 

that is applicable to observational studies (Hedeker et al., 1999; Raudenbush et al., 

2005; Snijders, 20033; Ziegler, 2004), nothing currently available comprehensively ad-

dresses all the cases considered in this paper, as they might arise in epidemiologic 

applications. Table 7 summarizes the features of the existing programs, as well as 

our own. Because program OD (Raudenbush, 1997; Raudenbush et al., 2005; Rau-

denbush and Xiao-Feng, 2001) only supports ’balanced designs’ where pe = 0.5, we 

do not consider it further here as such balance will rarely occur in an observational 

setting. Our program performs all the calculations described in this paper, and is 

publicly available, along with a user’s guide, at the second author’s website (http: 

//www.hsph.harvard.edu/faculty/spiegelman/optitxs.html). The pro-

gram runs in the R statistical package (R Development Core Team, 2006) which can 

be downloaded for free (http://www.r-project.org). Our program has an inter-

active user interface that queries the user for the optimal design scenario to consider, 

and for the relevant inputs for that scenario; no knowledge of R is required to run our 

program. The program has modules to calculate power, number of participants when 

number of repeated measures is fixed, number of repeated measures when number of 

participants is fixed, minimum detectable difference and optimal number of repeated 

measures and participants under budget constraints. A demonstration of its use to 

compute the optimal (N, r) under LDD and RS is shown in Appendix A.11. 
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7 Conclusions 

The power of a longitudinal study varies with several factors. Independent of as-

sumptions about the covariance structure, power increases as the number of partic-

ipants, the number of repeated measurements and the length of follow-up increase, 

and when the exposure prevalence approaches 0.5 from either direction. However, 

in many situations, we found that one cannot always achieve a pre-specified power 

solely by increasing the number of repeated measurements, since power sometimes 

reaches an asymptote. In practice, the length of follow-up or the time interval be-

tween successive measurements may be fixed or be restricted to a limited range of 

values. Sometimes, N may be fixed (e.g. when planning longitudinal follow-up of an 

existing cross-sectional study) and r needs to be determined. In other cases, r may 

be fixed (e.g. when the study is to be based on data collected during monthly clinic 

visits in an ongoing randomized trial of multivitamin and vitamin A supplementa-

tion among HIV-infected women in Dar es Salaam, Tanzania, for which funding can 

be obtained for no more than five years (Villamor et al., 2002) and N will need to be 

determined. In still other situations, (N, r) is fixed (e.g. in the Nurses’ Health Study 

where the number of nurses, the interval between successive measurements and the 

duration of follow-up is all fixed (Koh-Banerjee et al., 2003)), and one may need to de-

termine power for a range of effect sizes given the data available. These problems can 

all be solved using the program developed in this paper to implement the calculations 

discussed. 

The power of a longitudinal study, the required number of participants and the re-

quired number of repeated measures all vary with assumptions about the covariance 

structure of the outcome variable as it evolves over time. For a difference between 

exposure groups that is constant over time (CMD), the lower the correlations between 

observations within the same participant, the more powerful the study. That is, a 

study with observations that are less correlated would have more power for the same 
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number of participants and repeated measures; the study would need to recruit fewer 

participants to achieve the same power with a fixed number of repeated measures; and 

in most situations, a smaller number of repeated measures would be needed to achieve 

a pre-specified power for a fixed number of participants. If, in addition, there is a cor-

relation decay compatible with DEX, the study would have more power for fixed N 

and r than a study with CS covariance, and it would require fewer participants and 

fewer repeated measures to achieve the same power. The effect of departures from CS 

compatible with RS cannot be summarized in a straightforward manner. 

When there is a linear interaction between time and exposure (LDD), higher correla-

tions between repeated measurements within participants lead to increased power for 

the same N and r, and require fewer participants and repeated measures to achieve 

the same power. We showed that departures from CS towards DEX or RS decreased 

power and increased the required number of participants and repeated measures, al-

though the effect of θ on power and sample size was not monotone. These relation-

ships under LDD may change when participants enter the study at different times (e.g. 

when age is the time variable of interest and participants begin follow-up at different 

ages). After providing tentative design parameters from pilot data, the literature, and 

intuition, investigators can perform a sensitivity analysis for departures from com-

pound symmetry in their sample size or power calculations using our program. 

In practice, it is often the case that neither N nor r are fixed a priori. Then, there is 

an infinite set of combinations of (N, r) that achieve the same power. However, by 

taking cost into account, one can find the optimal combination of (N, r) to maximize 

the power subject to a particular budget or to minimize the budget subject to a fixed 

power. We solved this problem when s is fixed, where taking more repeated measures 

increases the length of follow-up, and when τ is fixed, where increasing r reduces 

the frequency of measurement. For CMD, if all observations have the same cost, one 

would not take repeated measures, i.e. one will design a cross-sectional study re-

cruiting as many participants as possible. If the subsequent measures of the same 
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participant are cheaper than the first, it may be advisable to take repeated measures 

and recruit fewer participants. However, no repeated measures or just a small number 

of them are necessary when the correlation between measures of the same participant 

is large, as is often the case with longitudinal data. When deviations from CS exist, 

it becomes more advisable to take at least one repeated measure. Under LDD, if the 

follow-up period is not fixed, we showed that the optimal design has the maximum 

length of follow-up possible, except when a RS covariance structure is assumed, in 

which case the optimal combination of (N, r) needs to be computed. If the follow-

up period is fixed, we showed that the optimal design takes more than one repeated 

measure only when the subsequent measures are more than five times cheaper. When 

there are departures from CS, we showed that values of κ around 10 or 20 are needed 

to justify taking 3 or 4 repeated measures. It must be pointed out that the optimal 

(N, r) and the resulting power strongly depended on the covariance structure in the 

extensive cases we examined, and combinations that are optimal for one assumed co-

variance structure were often quite poor for another. For particular problems, investi-

gators should perform sensitivity analysis for departures from the assumed values of 

covariance parameters. 

Of course, these recommendations for optimizing (N, r) are based purely on consid-

erations of power and cost. There are several other reasons to collect more repeated 

measurement than the optimal. For example, it might be useful to schedule regular 

visits during the whole follow-up period in order to minimize dropout and to have 

intermediate data for those who will eventually drop out. Another reason to collect 

many repeated measurements is when non-linearity of the response profile over time 

is anticipated. If time is mismodeled, and if time is not independent of exposure, 

i.e. if study participants do not adhere to visit schedules in a way that is associated 

with exposure, β̂2 and γ̂3 will be biased. Another situation where repeated measures 

are essential is when the exposure is time-varying, a situation that we will discuss in a 

subsequent paper and is found, for example, in crossover studies (Jones and Kenward, 
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1989; Senn, 2002). 

We considered scenarios where the participants do not have the same initial time 

value, which can be the case, for example, when participants from different ages are 

recruited and age is the time variable of interest. This requires two new parameters 

to be provided, V (t0) and ρe,t0 . Under CMD, having V (t0) > 0 reduces the power 

of the study, unless ρe,t0 = 0. Under LDD, however, as V (t0) increases so does the 

power of the study, and the effect is stronger the closer ρe,t0 is to zero. This increase 

in power is due to a bigger range of observation of data used to estimate the time 

by exposure interaction term. The situation where V (t0) > 0 resembles the accel-

erated longitudinal design (Bell, 1953), where multiple age cohorts are sampled and 

followed. Then, the response profiles of the exposed and the unexposed are modeled. 

In some applications, when cohort or period effects are suspected to occur that can-

not be adjusted for through standard individual-level covariate adjustments, or when 

between-subjects confounders (time-invariant confounders) are mis- or un-measured, 

B&W models that separate within- and between-subjects effects can be fit (Neuhaus 

and Kalbfleisch, 1998; Ware et al., 1990). If those models are to be used, the results for 

the LDD case with V (t0) = 0 derived in this paper apply and the power gained from 

V (t0) > 0 is lost. 

We based our formulas on the asymptotic variance of the estimator, in which case 

only the first two moments of the covariates and not its full distribution need to be 

provided. Other approaches have been used. When power is the object of interest, 

calculations can be based upon the expected value of the non-centrality parameter 

over the distribution of the covariates X (Lachin, 2000, chapter 3), where the test uses 

the conditional variance of B̂ given the covariates, i.e. computing ⎤⎡vuuuuuut 
⎧ ⎪⎪⎪⎨ ⎫ ⎪⎪⎪⎬�2 

(c0B)HA 

⎢⎢⎢⎢⎣ − z1−α/2 

⎥⎥⎥⎥⎦ EX �Φ �−1 . ⎪⎪⎪⎩c PN
0 X0 iΣ

−1 
i Xi c 

⎪⎪⎪⎭ 
i=1 
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When only exposure is random, this approach results in a (1 − 1/N) correction over 

the approach used in this paper, which is negligible for large N , and equation (3.1) 

becomes "√ �� #��(c0B)N − 1 HA√Φ − z1−α/2 
c0ΣBc 

(Appendix A.1.1). To find N for fixed r and power, or to find r for fixed N and power 

using Lachin’s approach, one would need to solve the power equation provided above 

for the desired quantity. To find the optimal (N, r) one would need to maximize the 

power equation given above subject to the cost constraint. Another approach would 

be to compute the expected value of the power formula over the distribution of X, 

where again the conditional variance of B̂ given the covariates is used, i.e. 

EX 

⎛ ⎜⎜⎜⎜⎝ Φ 

⎤⎡ ⎞ ⎟⎟⎟⎟⎠ 
√ 

� P 
N 

N

�� ��⎢⎢⎢⎢⎣ s − z1−α/2 

⎥⎥⎥⎥⎦ (c0B)HA �−1 

iΣ
−1 
ic0 X0 Xi c 

P 

i=1 

(Glueck and Muller, 2003). Since the actual power for the particular sample that is fi-

nally recruited can be different from the average power, more conservative quantities 

such as the 0.025 quantile of power (Glueck and Muller, 2003) over the distribuition of 

X might be more appropriate, but the results require the development of a numerical 

algorithm for accurately computing these quantiles. Similarly, one can derive the re-

quired N by taking the expected value of the sample size formula using the variance 

of B̂ conditional on the covariates, 

N
!� �−1 �20 X0 iΣ

−1Xi c zπ + z1−α/2c

X 

i=1 
N = ,

(c0BHA )
2 

over the distribution of X.This leads to computing 

N
⎡ ⎤!−1 

EX ⎣c 0 X0 iΣ
−1Xi c⎦ , 

i=1 

which, for the case where only exposure is random, is infinity, so this approach would 

not useful for this case. This approach would be hard to apply to find r, since no 
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explicit functions for r exist for most situations. To find the optimal (N, r), one would 

need to maximize the power equation given above subject to the cost constraint. All 

these approaches should produce very similar results to the approach followed in this 

paper, with the advantage that with our approach the distribution of the covariates 

does not need to be specified and that simpler formulas are obtained. 

In this paper, we assumed that all study participants are observed at the same sched-

uled time points, even though their initial age can vary (i.e. only initial age is random), 

because this most closely resembles the experience typically encountered in epidemi-

ological studies. Jung and Ahn (2003) studied the effect of dispersed times around 

the scheduled time points, and found that even in the random measurement times 

case, the sample size calculated under fixed measurement time assumption had an 

empirical power very close to the nominal power. 

Another factor which could be considered when designing observational longitudi-

nal studies is the dropout rate. Several studies looked at this issue (Dawson, 1998; 

Galbraith and Marschner, 2002; Hedeker et al., 1999; Jung and Ahn, 2003; Yi and Pan-

zarella, 2002) It was reassuring that Galbraith and Marschner (2002) found in a simu-

lation study that in a study of the power to detect group by exposure interactions (i.e. 

LDD) under RS, as long as the total percentage of lost to follow-up was no more than 

30%, then a study designed to achieve 90% power ignoring dropout will generally 

achieve an actual power of at least 80%. Another simple method consists of inflating 

the number of participants by a factor of 1/(1 − f), where f is the anticipated fraction 

of lost to follow-up (Fitzmaurice et al., 2004, page 409). Further research is needed to 

assess how dropout would affect the optimal combination (N, r), since the presence of 

dropout alters the inverse relationship between number of participants and number 

of time points at the same power (Hedeker et al., 1999). 

In summary, we provided formulas for power, sample size, number of repeated mea-

sures, and the optimal combination of participants and repeated measures are pro-
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vided for longitudinal studies with a continuous response and a binary time-invariant 

exposure. Our results extend to the case where, for example, age is the time measure 

of interest, instead of time in the study. General results were derived for the effects 

of the parameters involved in the calculations whenever possible. The parameters are 

formulated in an intuitive way to facilitate the choice of appropriate values and to ease 

sensitivity analyses. Using our publicly available program, users can perform all the 

design calculations described in the paper and we encourage investigators to make 

use of this, rather than relying on generalizations which may or may not apply in a 

particular situation, given the complexity of what needs to be considered in exploring 

the optimal design. 
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