Supplementary Material to 'Power and Sample Size Calculations for Longitudinal Studies Estimating a Main Effect of a Time-Varying Exposure' by X.
 Basagaña, X. Liao and D. Spiegelman

Web Appendix A Intraclass correlation

Web Appendix A. 1 Relationship between correlation coefficient and intraclass correlation when the exposure prevalence is not constant over time

If the prevalence of exposure is not constant over time but the exposure process follows CS, we have $\mathbb{E}\left[E_{j} E_{j^{\prime}}\right]=\left(\rho_{x} \sqrt{p_{e j}\left(1-p_{e j}\right)} \sqrt{p_{e j^{\prime}}\left(1-p_{e j^{\prime}}\right)}+p_{e j} p_{e j^{\prime}}\right)$, where ρ_{x} is the common correlation between exposures at different time points. From Web Appendix C.6, we have $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left[E_{j} E_{j^{\prime}}\right]=\bar{p}_{e} r(r+1)\left[\bar{p}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right]$. Therefore,
we have that

$$
\rho_{x} \sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left(\sqrt{p_{e j}\left(1-p_{e j}\right)} \sqrt{p_{e j^{\prime}}\left(1-p_{e j^{\prime}}\right)}+\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} f_{e j} p_{e j^{\prime}}=\left(\begin{array}{l}
\bar{p}_{e} r(r+1)\left[\bar{p}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right] .
\end{array}\right.\right.
$$

Solving for ρ_{x}, we have

$$
\rho_{x}=\frac{\bar{p}_{e} r(r+1)\left[\bar{p}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right]-\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left(\rho_{e j} p_{e j^{\prime}}\right.}{\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \sqrt{p_{e j}\left(1-p_{e j}\right)} \sqrt{p_{e j^{\prime}}\left(1-p_{e j^{\prime}}\right)}} .
$$

Note that if $p_{e j}=p_{e} \forall j$ then $\rho_{x}=\rho_{e}$. Equivalently one can deduce

$$
\rho_{e}=\frac{\rho_{x} \sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \sqrt{p_{e j}\left(1-p_{e j}\right)} \sqrt{p_{e j^{\prime}}\left(1-p_{e j^{\prime}}\right)}+\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left(p_{e j} p_{e j^{\prime}}-\bar{p}_{e}^{2} r(r+1)\right.}{\bar{p}_{e} r(r+1)\left(1-\bar{p}_{e}\right)} .
$$

Web Appendix A. 2 Upper bound for ρ_{e}

For binary variables, we have the constraint $\mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \leqslant \min \left(p_{e j}, p_{e j^{\prime}}\right) \forall j, j^{\prime}$. In Web Appendix C. 6 we derived the equality

$$
\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \notin\left[E_{j} E_{j^{\prime}}\right]=\bar{p}_{e} r(r+1)\left[\bar{p}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right]
$$

from where it can be deduced that

$$
\begin{aligned}
& \rho_{e}=\frac{1}{1-\bar{p}_{e}}\left[\frac{\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left[\notin\left[E_{j} E_{j^{\prime}}\right]\right.}{\bar{p}_{e} r(x+1)}-\bar{p}_{e}\right] . \\
& \text { nt that }
\end{aligned}
$$

Then, it is easily shown that

Now,

$$
\rho_{e} \leqslant \frac{1}{1-\bar{p}_{e}}\left[\frac{\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left(\min \left(p_{e j}, p_{e j^{\prime}}\right)\right.}{\bar{p}_{e} \kappa(r+1)}-\bar{p}_{e}\right]
$$

$$
\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \min \left(p_{e j}, p_{e j^{\prime}}\right)=2\left(r (p _ { e (0) } + (r - 1) p _ { e (1) } + \cdots + p _ { e (r - 1) }) \left(=2 \sum_{j=0}^{r-1}(r-j) p_{e(j)}\right.\right.
$$

where $p_{e(j)}$ is the j th order statistic. Then,

$$
\rho_{e} \leqslant \frac{1}{1-\bar{p}_{e}}\left[\frac{\left(\sum_{j=0}^{r-1}(r-j) p_{e(j)}\right.}{\left(\bar{p}_{e} \lambda(r+1)\right.}-\bar{p}_{e}\right]
$$

Web Appendix B Equivalence of conditional likelihood and a model on differences

${ }^{1}$ proved this equivalence for the mixed effects model, where $\boldsymbol{\Sigma}_{i}=\mathbf{Z}_{i} \mathbf{D} \mathbf{Z}_{i}^{\prime}+\sigma_{w}^{2} \mathbf{I}$. This model has the special feature that conditional on the random effects, the observations are independent. The DEX model does not follow this structure. The
proof given here is for a general response covariance matrix, $\boldsymbol{\Sigma}_{i}$, and thus extends their results. Suppose that we have subject-specific intercepts a_{i}, which can be fixed or random, and assume that $\mathbb{E}\left(\mathbf{Y}_{i}\right)=a_{i} \mathbf{1}+\mathbf{X}_{i} \beta$, where $\mathbf{1}$ is a vector of ones, \mathbf{X}_{i} a matrix of covariates and β a vector of regression parameters. Assuming normality of \mathbf{Y}_{i} and $\operatorname{Var}\left(\mathbf{Y}_{i}\right)=\boldsymbol{\Sigma}_{i}$, the probability density function has the expression

$$
\begin{aligned}
& f\left(\mathbf{Y}_{i} \mid a_{i}, \mathbf{X}_{i}\right)=\frac{1}{(2 \pi)^{\frac{r+1}{2}}\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{Y}_{i}-a_{i} \mathbf{1}-\mathbf{X}_{i} \beta\right)^{\prime} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{Y}_{i}-a_{i} \mathbf{1}-\mathbf{X}_{i} \beta\right)\right)= \\
& \frac{1}{(2 \pi)^{\frac{r+1}{2}}\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}} \\
& \quad \exp \left(-\frac{1}{2}\left[\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)-2\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime} \boldsymbol{\Sigma}_{i}^{-1} a_{i} \mathbf{1}+a_{i}^{2} \mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\right]\right)(
\end{aligned}
$$

By the factorization theorem, a sufficient statistic for a_{i} is $s_{i}=\mathbf{Y}_{i}^{\prime} \boldsymbol{\Sigma}_{i}{ }^{-1} \mathbf{1}=\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}{ }^{-1} \mathbf{Y}_{i}$.
The sufficient statistic s_{i} is distributed as a univariate normal with expected value $\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} a_{i} \mathbf{1}+\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}{ }^{-1} \mathbf{X}_{i} \beta$ and variance $\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}$. Then, the density of \mathbf{Y}_{i} conditioning on the sufficient statistic s_{i} is

$$
\begin{aligned}
& f\left(\mathbf{Y}_{i} \mid s_{i}, \mathbf{X}_{i}\right)=\frac{f\left(\mathbf{Y}_{i} \mid a_{i}, \mathbf{X}_{i}\right)}{f\left(s_{i} \mid a_{i}, \mathbf{X}_{i}\right)}=\frac{\frac{1}{(2 \pi)^{\frac{r+1}{2}}\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}}}{\left.\frac{1}{\left.(2 \pi)^{\frac{1}{2}} \right\rvert\, \mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}-1} \mathbf{1}\right|^{1 / 2}} \\
& \frac{\exp \left(-\frac{1}{2}\left[\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)-2\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime} \boldsymbol{\Sigma}_{i}^{-1} a_{i} \mathbf{1}+a_{i}^{2} \mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\right]\right)}{\exp \left(-\frac{1}{2\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}{ }^{-1} \mathbf{1}\right)}\left(\boldsymbol{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{Y}_{i}-\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} a_{i} \mathbf{1}-\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{X}_{i} \beta\right)^{2}\right)}(= \\
& \frac{\left|\boldsymbol{\chi}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\right|^{1 / 2}}{(2 \pi)^{\frac{r}{2}}\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime}\left[\mathbf{\not}_{i}^{-1}-\boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1}\right]\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)\right) .
\end{aligned}
$$

Using property B.3.5 of ${ }^{2}$, page 536,

$$
\Sigma_{i}^{-1}-\boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\left(\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} \Sigma_{i}^{-1}=\boldsymbol{\Delta}^{\prime}\left(\Delta \boldsymbol{\Sigma}_{i} \Delta^{\prime}\right)^{-1} \Delta
$$

we can write then the conditional likelihood as

$$
\begin{aligned}
& L\left(\beta \mid s_{1}, \ldots, s_{N}, \mathbf{X}\right)= \\
& \qquad \prod_{i=1}^{N} \frac{\left|\mathbf{1}^{\prime} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\right|^{1 / 2}}{(2 \pi)^{\frac{r}{2}}\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}} \exp \left(\left(-\frac{1}{2}\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime} \boldsymbol{\Delta}^{\prime}\left(\boldsymbol{\Delta} \boldsymbol{\Sigma}_{i} \boldsymbol{\Delta}^{\prime}\right)^{-1} \boldsymbol{\Delta}\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)\right)(\right.
\end{aligned}
$$

and the \log-likelihood $\log L\left(\beta \mid s_{1}, \ldots, s_{N}, \mathbf{X}\right)$ will then be proportional to

$$
\frac{N}{2} \log \left|\mathbf{1} / \boldsymbol{\Sigma}_{i}^{-1} \mathbf{1}\right|\left(\left(\frac{N}{2} \log \left|\boldsymbol{\Sigma}_{i}\right|-\frac{1}{2} \sum_{i=1}^{N}\left(\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime} \boldsymbol{\Delta}^{\prime}\left(\boldsymbol{\Delta} \boldsymbol{\Sigma}_{i} \boldsymbol{\Delta}^{\prime}\right)^{-1} \boldsymbol{\Delta}\left(\mathbf{Y}_{i}-\mathbf{X}_{i} \beta\right)\right)\right.\right.
$$

The maximum likelihood estimator of β is

$$
\left.\left.\hat{\beta}=\sum_{i=1}^{N}\left(\mathbf{X}_{i}^{\prime} \boldsymbol{\Delta}^{\prime}\left(\boldsymbol{\Delta} \boldsymbol{\Sigma}_{i} \boldsymbol{\Delta}^{\prime}\right)^{-1} \boldsymbol{\Delta} \mathbf{X}_{i}\right)\right)^{-} \sum_{i=1}^{N}\left(\mathbf{X}_{i}^{\prime} \boldsymbol{\Delta}^{\prime}\left(\boldsymbol{\Delta} \boldsymbol{\Sigma}_{i} \boldsymbol{\Delta}^{\prime}\right)^{-1} \boldsymbol{\Delta} \mathbf{Y}_{i}\right)\right)(
$$

and

$$
\left.\operatorname{Var}(\hat{\beta})\left(=\sum_{i=1}^{N}\left(\mathbf{X}_{i}^{\prime} \boldsymbol{\Delta}^{\prime}\left(\boldsymbol{\Delta} \boldsymbol{\Sigma}_{i} \boldsymbol{\Delta}^{\prime}\right)^{-1} \boldsymbol{\Delta} \mathbf{X}_{i}\right)\right)^{-}=\sum_{i=1}^{N}\left(\mathbf{X}_{i}^{\prime} \mathbf{M}_{i} \mathbf{X}_{i}\right)\right)^{-}
$$

where the notation A^{-}indicates the generalized inverse of A . Note that $\Delta \mathbf{X}_{i}$ will contain columns of zeros for those variables that are time-invariant, and first order differences for the time-varying variables. It is readily seen that, when Σ_{i} is known, $\hat{\beta}$ and $\operatorname{Var}(\hat{\beta})$ from the conditional approach are equivalent to the solution to the regression of $\Delta \mathbf{Y}_{i}$ on ΔX_{i} by GLS using the covariance matrix $\Delta \Sigma_{i} \Delta^{\prime}$.

Web Appendix C Derivation of formulas for σ_{1}^{2}

Web Appendix C. 1 Model (2.2)

The $[g, h]$ term of the matrix $\mathbb{E}_{X}\left[\mathbf{X}_{i}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}_{i}\right]$ can be written as $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\varphi^{j j^{\prime}} \mathbb{E}\left[x_{i j g} x_{i j^{\prime} h}\right]\right)$, where $x_{i j g}$ is the value of the g th covariate for subject i at time j. Model (2.2) contains only two covariates, a column of ones and the column of exposures. The $[1,1]$ component of $\mathbb{E}_{X}\left[\mathbf{X}^{\prime}{ }^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}_{i}\right]$ is $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}}\right.$,
the [2,1] and [1,2] components are $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} p_{e j}\right)$ and the [2,2] component is $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(u^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$. Then, the $[2,2]$ component of the inverse is

$$
\boldsymbol{\Sigma}_{\mathrm{B}}[2,2]=\sigma_{1}^{2}=\frac{\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}}\right.}{\left.\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}}\right)\left(\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{\left.j^{\prime}\right]}\right)-\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} p_{e j}\right)\right)^{2}\right.} .
$$

Web Appendix C. 2 Model (2.3)

Based on Web Appendix $\mathrm{B}, \boldsymbol{\Sigma}_{\mathrm{B}}=\left(\mathbb{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{M} \mathbf{X}_{i}\right]\right)^{-}$. In model (2.2), \mathbf{X}_{i} contains a column of ones and the column of exposures at the previous time point. Since $\Delta 1=0$,
and the $[2,2]$ component of the $\left(\mathbb{E}\left[\mathbf{X}_{i}^{\star} \mathbf{M} \mathbf{X}_{i}\right]\right)^{-}$is

$$
\sigma_{1}^{2}=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)^{-1}
$$

Web Appendix C. 3 Model (2.4)

Model (2.4) contains a column of ones, the column of exposures and the column of times, and the $[g, h]$ term of the matrix $\mathbb{E}_{X}\left[\mathbf{X}_{i}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}_{i}\right]$ can be written as $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\varphi^{j^{\prime}} \mathbb{E}\left[x_{i j g} x_{i j^{\prime} h}\right]\right)$. (The [1,1], [1,2] , [2,1] and [2,2] components were derived in Web Appendix C.1. The [3,1] and [1,3] components are

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\left(\psi^{j j^{\prime}} \mathbb{E}\left[t_{j}\right]\right)=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\left(\psi^{j j^{\prime}} \mathbb{E}\left[t_{0}+s j\right]\right)=\mathbb{E}\left[t_{0}\right] \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}}+s \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}}\right.\right.\right.
$$

The [3,2] and [2,3] component are

$$
\begin{array}{r}
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} t_{j^{\prime}}\right]\right)\left(=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j}\left(t_{0}+s j^{\prime}\right)\right]\right)(=\right.\right. \\
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} t_{0}\right]\right)\left(+s \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} \alpha_{e j} j^{\prime} v^{j j^{\prime}}\right.
\end{array}
$$

Without loss of generality, the time variable can be centered at the mean initial time so that $\mathbb{E}\left[t_{0}\right]=0$ and $\mathbb{E}\left[t_{0}^{2}\right]=V\left(t_{0}\right)$. Defining $\rho_{e_{j}, t_{0}}$ as the correlation between initial time (or age at entry) and exposure at the j th time, then the [3,2] and $[2,3]$ components are

$$
\sqrt{V\left(t_{0}\right)} \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left((\rho _ { e _ { j } , t _ { 0 } } \sqrt { p _ { e j } (1 - p _ { e j }) } v ^ { j j ^ { \prime } }) \left(+s \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} p_{e j} j^{\prime} v^{j j^{\prime}} .\right.\right.
$$

The [3,3] component is

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\left(\psi^{\left[j j^{\prime}\right.} \mathbb{E}\left[t_{j} t_{j^{\prime}}\right]\right)=\mathbb{E}\left[t_{0}^{2}\right] \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} f^{j j^{\prime}}+2 s \mathbb{E}\left[t_{0}\right] \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} j v^{j j^{\prime}}+s^{2} \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left\{j^{\prime} v^{, j j^{\prime}}\right.\right.
$$

Let $a=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}}, b=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left\langle j v^{j j^{\prime}}, c=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left\langle j j^{\prime} v^{j j^{\prime}}, d=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}} p_{e j}\right.\right.$, $e=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right], f=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(p_{e j} j^{\prime} v^{j j^{\prime}}\right.\right.$ and $g=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} \rho_{e j, t_{0}} \sqrt{p_{e j}\left(1-p_{e j}\right)} v^{j j^{\prime}}$.
Then,

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{\mathrm{B}}[2,2]=\sigma_{1}^{2}= \\
& \frac{b^{2} s^{2}-a\left(c s^{2}+a V\left(t_{0}\right)\right)}{\left(b^{2} e+c\left(d^{2}-a e\right)-2 b d f+a f^{2}\right) s^{2}-2(b d-a f) g s \sqrt{V\left(t_{0}\right)}+a\left(d^{2}-a e+g^{2}\right) V\left(t_{0}\right)} .
\end{aligned}
$$

If the prevalence of exposure is constant over time, then $d=p_{e} a$ and $f=p_{e} b$. Therefore,

$$
\sigma_{1}^{2}=\frac{b^{2} s^{2}-a\left(c s^{2}+a V\left(t_{0}\right)\right)}{\left(b^{2} e+c\left(p_{e}^{2} a^{2}-a e\right)-p_{e}^{2} a b^{2}\right) s^{2}+a\left(p_{e}^{2} a^{2}-a e+g^{2}\right) V\left(t_{0}\right)}
$$

If, in addition to the prevalence of exposure being constant over time, $V\left(t_{0}\right)=0$ or $\rho_{e_{j}, t_{0}}=0 \forall j$, then $\sigma_{1}^{2}=\frac{1}{e-p_{e}^{2} a}$, which equals the variance for model (2.2).

Web Appendix C. 4 Model (2.5)

Based on Web Appendix C.1, $\boldsymbol{\Sigma}_{\mathrm{B}}=\left(\mathbb{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{M} \mathbf{X}_{i}\right]\right)^{-}$. In model (2.4), \mathbf{X}_{i} contains a column of ones, the column of exposures and the column of times. Since $\Delta \mathbf{1}=0$, we have $1^{\prime} \mathbf{M}=0$, i.e. the sum of each column of M is zero. This implies that the $[1,1],[1,2],[1,3],[2,1]$ and $[3,1]$ components of $\mathbb{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{M} \mathbf{X}_{i}\right]$ are zero. The $[2,2]$ component is $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$, as derived in Web Appendix C.2. Without loss of generality, the time variable can be centered at the mean initial time so that $\mathbb{E}\left[t_{0}\right]=0$ and $\mathbb{E}\left[t_{0}^{2}\right]=V\left(t_{0}\right)$. Then, the $[2,3]$ and $[3,2]$ components are

$$
\begin{gathered}
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\not q i^{j j^{\prime}} \mathbb{E}\left[E_{j} t_{j^{\prime}}\right]\right)=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} \mathbb{E}\left[E_{j}\left(t_{0}+s j^{\prime}\right)\right]\right)(\\
=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} \mathbb{E}\left[E_{j} t_{0}\right]\right)\left(+s \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} \chi_{e j} j^{\prime} m^{j j^{\prime}}\right.
\end{gathered}
$$

The first term of the last expression is equal to $\sum_{j=0}^{r} \mathbb{E}\left[E_{j} t_{0}\right] \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}}=0\right.$. The $[3,3]$
term is

$$
\begin{aligned}
& \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} \mathbb{E}\left[t_{j} t_{j^{\prime}}\right]\right) \\
& =\mathbb{E}\left[t_{0}^{2}\right] \sum_{j=0}^{r} \sum_{\ell^{\prime}=0}^{r}\left(n^{j j^{\prime}}+2 s \mathbb{E}\left[t_{0}\right] \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}}+s^{2} \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} j j^{\prime} m^{j j^{\prime}}\right.\right.
\end{aligned}
$$

and since the two first elements of this expression are zero, the [3,3] term is $s^{2} \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} j j^{\prime} m^{j j^{\prime}}$. Then,

$$
\mathbb{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{M} \mathbf{X}_{i}\right]=\left(\begin{array}{ccc}
0 & s & 0 \\
0 & \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(\begin{array}{ll}
0 j j^{\prime} & \mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \\
s \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} p_{e j} j^{\prime} m^{j j^{\prime}} \\
0 & s \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(p_{e j} j^{\prime} m^{j j^{\prime}}\right.
\end{array}\right. & s^{2} \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} j j^{\prime} m^{j j^{\prime}}
\end{array}\right)
$$

and the $[2,2]$ component of the $\left(\mathbb{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{M} \mathbf{X}_{i}\right]\right)^{-}$is

$$
\boldsymbol{\Sigma}_{\mathrm{B}}[2,2]=\sigma_{1}^{2}=\frac{\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(j j^{\prime} m^{j j^{\prime}}\right.}{\left.\left.\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} j j^{\prime} m^{j j^{\prime}}\right) \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)-\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} j^{\prime} p_{e j}\right)\right)^{2}} .
$$

If the prevalence of exposure is constant over time, then $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} j^{\prime} p_{e j}=\right.$ $p_{e} \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(j^{\prime} m^{j j^{\prime}}=p_{e} \mathbf{1}^{\prime} \mathbf{M t}\right.$, and since $\mathbf{1}^{\prime} \mathbf{M}=0$, the second term in the denominator vanishes. [Therefore,

$$
\sigma_{1}^{2}=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)^{-1}
$$

as for model (2.3).

Web Appendix C. 5 Proof that, under CS response, $\rho_{e_{j}, e_{j}} \forall j, j^{\prime}$ do not need to be provided for models (2.2)-(2.5), but only ρ_{e}. Proof that, under CS response, $p_{e j} \forall j$ do not need to be provided for models (2.2)-(2.3) but only \bar{p}_{e}

First, we derive the form of the matrices Σ^{-1} and M under CS. If Σ has CS structure, then Σ^{-1} has diagonal elements equal to

$$
\frac{1}{\sigma^{2}} \frac{(r-1) \rho+1}{(1-\rho)(1+r \rho)}
$$

and off-diagonal elements equal to

$$
\frac{1}{\sigma^{2}} \frac{-\rho}{(1-\rho)(1+r \rho)}
$$

Importantly, the sum of every row or column is the same and equal to

$$
\sum_{j=0}^{r} v^{j j^{\prime}}=\sum_{j^{\prime}=0}^{r} f^{j j^{\prime}}=\frac{1}{\sigma^{2}(1+r \rho)},
$$

and the sum of all elements of the inverse matrix is

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}}=\frac{r+1}{\sigma^{2}(1+r \rho)}
$$

Under CS, the matrix $\boldsymbol{\Delta} \boldsymbol{\Sigma} \boldsymbol{\Delta}^{\prime}$ is a $r \times r$ tridiagonal matrix of the form

$$
\sigma^{2}(1-\rho)\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & -1 & 2 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right)
$$

The $\left[j, j^{\prime}\right]$ element of $\left(\Delta \Sigma \Delta^{\prime}\right)^{-1}$ is of the form

$$
\frac{1}{4 \sigma^{2}(1-\rho)(r+1)}\left[\left(j+j^{\prime}-\left|j^{\prime}-j\right|\right)\left(2 r+2-\left|j^{\prime}-j\right|-j-j^{\prime}\right)\right]
$$

for $j, j^{\prime}=1, \ldots, r^{3}$, which can be rewritten as

$$
\frac{1}{2 \sigma^{2}(1-\rho)(r+1)}\left[(r+1) j+(r+1) j^{\prime}-2 j j^{\prime}-(r+1)\left|j^{\prime}-j\right|\right] .
$$

If we pre-multiply by Δ^{\prime}, the $\left[j, j^{\prime}\right]$ element of $\Delta^{\prime}\left(\Delta \Sigma \Delta^{\prime}\right)^{-1}$ is

$$
\begin{aligned}
& \frac{1}{2 \sigma^{2}(1-\rho)(r+1)} \\
& \sum_{k=1}^{r}(I\{k=j\}-I\{k=j+1\})\left((r+1) k+(r+1) j^{\prime}-2 k j^{\prime}-(r+1)\left|j^{\prime}-k\right|\right)
\end{aligned}
$$

where $I\{k=j\}$ is an indicator function that is one if $k=j$ and zero otherwise. The last expression can be simplified to

$$
\frac{1}{2 \sigma^{2}(1-\rho)(r+1)}\left((r+1)\left[\left|j^{\prime}-j-1\right|-\left|j^{\prime}-j\right|-1\right]+2 j^{\prime}\right)
$$

for $j=0, \ldots, r ; j^{\prime}=1, \ldots, r$. Now, post-multiplying the result by Δ we can derive the $\left[j, j^{\prime}\right]$ element of $\boldsymbol{\Delta}^{\prime}\left(\boldsymbol{\Delta} \boldsymbol{\Sigma} \boldsymbol{\Delta}^{\prime}\right)^{-1} \boldsymbol{\Delta}$, which is

$$
\begin{aligned}
& \frac{1}{2 \sigma^{2}(1-\rho)(r+1)} \\
& \sum_{k=1}^{r}((r+1)[|k-j-1|-|k-j|-1]+2 k)\left(I\left\{k=j^{\prime}\right\}-I\left\{k=j^{\prime}+1\right\}\right)
\end{aligned}
$$

for $j=0, \ldots, r ; j^{\prime}=0, \ldots, r$. The last expression simplifies to

$$
\frac{1}{2 \sigma^{2}(1-\rho)(r+1)}\left((r+1)\left[\left|j^{\prime}-j-1\right|+\left|j^{\prime}-j+1\right|-2\left|j^{\prime}-j\right|\right]-2\right)
$$

Note that this expression is $\frac{r}{\sigma^{2}(1-\rho)(r+1)}$ for $j^{\prime}=j$ and $\frac{-1}{\sigma^{2}(1-\rho)(r+1)}$ for $j^{\prime} \neq j$. Therefore, the matrix $\mathrm{M}=\boldsymbol{\Delta}^{\prime}\left(\boldsymbol{\Delta} \boldsymbol{\Sigma} \boldsymbol{\Delta}^{\prime}\right)^{-1} \boldsymbol{\Delta}$ has diagonal elements $\frac{r}{\sigma^{2}(1-\rho)(r+1)}$ and offdiagonal elements $\frac{-1}{\sigma^{2}(1-\rho)(r+1)}$. It is then easily proven that the sum of any row or column of M is zero.

Based on Web Appendix C.1-Web Appendix C.4, the only components that depend on $\rho_{e_{j}, e_{j^{\prime}}} \forall j, j^{\prime}$ for models (2.2)-(2.5) are $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(j^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ and $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]$.
From the form of $\boldsymbol{\Sigma}^{-1}$ we have that

$$
\begin{aligned}
& \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)= \\
& \frac{(r-1) \rho+1}{\sigma^{2}\left[1+\rho(r-1)-\rho^{2} r\right]} \sum_{j=0}^{r} \mathbb{E}\left(E_{j}^{2}\right)\left(\frac{\rho}{\sigma^{2}\left(1+\rho(r-1)-\rho^{2} r\right)} \sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.
\end{aligned}
$$

Since the exposure is binary, then $\mathbb{E}\left(E_{j}^{2}\right)\left(\begin{array}{l}=\mathbb{E}\left(E_{j}\right)=p_{e j} \text {, and } \sum_{j=0}^{r} \mathbb{E}\left(E_{j}^{2}\right)(=\quad=\quad=r\end{array}\right.$ $\sum_{j=0}^{r} p_{e j}=(r+1) \bar{p}_{e}$. Now, we define $E_{i} .=\sum_{j=0}^{r} E_{i j}$ as the total number of exposed periods for subject i. Then, by the properties of the expectation we have

$$
\begin{aligned}
\mathbb{E}\left[E_{j} E_{j^{\prime}}\right]= & \mathbb{E}\left(\mathbb{E}\left[E_{i j} E_{i j^{\prime}} \mid E_{i \cdot}\right]\right)=\mathbb{E}\left(P\left(E_{i j}=1 \cap E_{i j^{\prime}}=1 \mid E_{i \cdot}\right)\right) \\
& =\mathbb{E}\left(\frac{E_{i \cdot}\left(E_{i \cdot}-1\right)}{(r+1) r}\right)=\frac{1}{r(r+1)}\left[\mathbb{E}\left(E_{i \cdot}^{2}\right)\left(\mathbb{E}\left(E_{i}\right)\right]\right.
\end{aligned}
$$

and $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \in\left[E_{j} E_{j^{\prime}}\right]=\mathbb{E}\left(E_{i .}^{2}\right)-\mathbb{E}\left(E_{i .}\right)$. Since $\mathbb{E}\left(E_{i}.\right)=(r+1) \bar{p}_{e}$, the only additional unknown for the $[2,2]$ component is $\mathbb{E}\left(E_{i .}^{2}\right)$. Instead of providing $\mathbb{E}\left(E_{i .}^{2}\right)$, we can base the formulas on the intraclass correlation of exposure, which has the expression

$$
\rho_{e}=\frac{\mathbb{E}\left(E_{i}^{2}\right)-(r+1) \bar{p}_{e}\left(1+\bar{p}_{e} r\right)}{r(r+1) \bar{p}_{e}\left(1-\bar{p}_{e}\right)}
$$

4. Then, $\mathbb{E}\left(E_{i .}^{2}\right)=\bar{p}_{e}(r+1)\left(1+\bar{p}_{e} r\left(1-\rho_{e}\right)+\rho_{e} r\right), \sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]=$ $\bar{p}_{e} r(r+1)\left[\bar{p}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right]$ and we have that

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]=\frac{\bar{p}_{e}(r+1)\left[1+\rho\left(r-1-\bar{p}_{e} r\left(1-\rho_{e}\right)-\rho_{e} r\right)\right]}{(1-\rho) \sigma^{2}(1+r \rho)}
$$

which only depends on $\overline{p_{e}}$ and ρ_{e}.

From the form of M under CS, we have

$$
\begin{aligned}
& \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]=\sum_{j=0}^{r} m^{j j} p_{e j}+\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left(n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.\right. \\
& =\frac{r}{\sigma^{2}(1-\rho)(r+1)} \sum_{j=0}^{r} \phi_{e j}-\frac{1}{\sigma^{2}(1-\rho)(r+1)} \sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]
\end{aligned}
$$

Now, $\sum_{j=0}^{r} p_{e j}=(r+1) \bar{p}_{e,}$ and as proven above, $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left[E_{j} E_{j^{\prime}}\right]=$
$\bar{p}_{e} r(r+1)\left[\overline{\bar{x}}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right]$. Therefore,

$$
\begin{array}{r}
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]=\frac{r(r+1) \bar{p}_{e}}{\sigma^{2}(1-\rho)(r+1)}-\frac{\bar{p}_{e} r(r+1)\left[\bar{p}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right]}{\sigma^{2}(1-\rho)(r+1)} \\
=\frac{\bar{p}_{e}\left(1-\bar{p}_{e}\right) r\left(1-\rho_{e}\right)}{\sigma^{2}(1-\rho)}
\end{array}
$$

which only depend $\overline{p_{e}}$ and ρ_{e}. Thus, $\rho_{e_{j}, e_{j^{\prime}}} \forall j, j^{\prime}$ do not need to be provided for models (2.2)-(2.5), but only ρ_{e}.

Based on Web Appendix C.1-Web Appendix C.2, the only other component, apart from the ones just derived, that may depend on $p_{e j} \forall j$ for models (2.2)-(2.3) is $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(j^{j j^{\prime}} p_{e j}\right.$, and using the form of $\boldsymbol{\Sigma}^{-1}$ under CS we have

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}} p_{e j}=\sum_{j=0}^{r} p_{e j} \sum_{j^{\prime}=0}^{r} f^{j j^{\prime}}=\frac{1}{\sigma^{2}(1+r \rho)} \sum_{j=0}^{r} p_{e j}=\frac{(r+1) \bar{p}_{e}}{\sigma^{2}(1+r \rho)}
$$

which only depends on \bar{p}_{e}. Therefore, for models (2.2)-(2.3) under CS, $p_{e j} \forall j$ do not need to be provided, but only \bar{p}_{e}.

Web Appendix C. 6 Expression for σ_{1}^{2} for model (2.2) under CS covariance of the response

For model (2.2), $\mathbb{E}_{X}\left[\mathbf{X}_{i}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}_{i}\right]$ is a $[2 \times 2]$ matrix. Using the results of Web Appendix C.5, the $[1,1]$ component is $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(j^{j j^{\prime}}=\frac{r+1}{\sigma^{2}(1+r \rho)}\right.$, the $[1,2]$ and $[2,1]$ compo-
nent are

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}} p_{e j}=\frac{(r+1) \bar{p}_{e}}{\sigma^{2}(1+r \rho)},
$$

and the $[2,2]$ component is

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]=\frac{\bar{p}_{e}(r+1)\left[1+\rho\left(r-1-\bar{p}_{e} r\left(1-\rho_{e}\right)-\rho_{e} r\right)\right]}{(1-\rho) \sigma^{2}(1+r \rho)}
$$

Then, the $[2,2]$ component of the inverse of $\mathbb{E}_{X}\left[\mathbf{X}_{i}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{X}_{i}\right]$ is

$$
\sigma_{1}^{2}=\frac{\sigma^{2}(1-\rho)(1+r \rho)}{\bar{p}_{e}\left(1-\bar{p}_{e}\right)(r+1)\left(1-\rho\left(1-r+r \rho_{e}\right)\right)} .
$$

Web Appendix C. 7 Variance formula for model (2.3) under CS covariance of the response

Using the results of Web Appendix C.5, the formula for σ_{1}^{2} for model (2.3) derived in Web Appendix C. 2 reduces to

$$
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)^{-1}=\frac{\sigma^{2}(1-\rho)}{\bar{p}_{e}\left(1-\bar{p}_{e}\right) r\left(1-\rho_{e}\right)}
$$

when CS of the response is assumed.

Web Appendix D Generation of arbitrary prevalence vectors and correlation matrices

Arbitrary prevalence vectors can easily be generated by drawing numbers from a Uniform $[0,1]$. Arbitrary correlations matrices for binary data are more difficult
to generate because they involve a lot of constraints ${ }^{5}$. Thus, we proceeded by first generating valid arbitrary covariance matrices for a multivariate normal distribution, and then deriving the covariance matrix that results from dichotomizing each of the normal variables so that a given prevalence at each time point is obtained. To generate arbitrary correlation matrices, random numbers were drawn from a Uniform $[-1,1]$ for each pair of time points. If the resulting correlation matrix was not positive definite, it was transformed to the nearest positive definite one ${ }^{6}$. The process of obtaining the prevalence vector and the covariance matrix of the dichotomized variables is described by ${ }^{5}$. To ensure that the space of possible values of (\bar{p}_{e}, ρ_{e}) was evenly covered, prevalence vectors with a narrow range of prevalences and correlation matrices with positive and high correlations were given more weight.

Web Appendix E Proof that under AR(1) covariance of response and $V\left(t_{0}\right)=0, \sigma_{1}^{2}$ for models (2.2) and (2.4) is exactly calculated by knowing $p_{e j} \forall j$ and $\rho_{e_{1}}$, regardless of the covariance of the exposure

If $\boldsymbol{\Sigma}$ is $\operatorname{AR}(1)$, then Σ^{-1} has the form

$$
\Sigma^{-1}=\frac{1}{\left(1-\rho^{2}\right) \sigma^{2}}\left(\begin{array}{cccccc}
1 & -\rho & 0 & 0 & \cdots & 0 \\
-\rho & 1+\rho^{2} & -\rho & 0 & & 0 \\
0 & -\rho & 1+\rho^{2} & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & -\rho & 0 \\
\vdots & & \ddots & -\rho & 1+\rho^{2} & -\rho \\
0 & 0 & \cdots & 0 & -\rho & 1
\end{array}\right)(
$$

${ }^{7}$ page 201. In models (2.2) and (2.4), once $p_{e j} \forall j$ is fixed and $V\left(t_{0}\right)=0$ is assumed, only the term $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ is not known in the formula for σ_{1}^{2}. Since under $\operatorname{AR}(1) v^{j j^{\prime}}=0$ for $\left|j j^{\prime}\right|>1$, and $v^{j j^{\prime}}=\frac{-\rho}{\left(1-\rho^{2}\right) \sigma^{2}}$ for $\left|j-j^{\prime}\right|=1$,

$$
\left.\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} f^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]=\frac{1}{\left(1-\rho^{2}\right) \sigma^{2}} \quad p_{e 0}+p_{e r}+\left(1+\rho^{2}\right) \sum_{j=1}^{r-1} p_{e j}-2 \rho \sum_{j=0}^{r-1} \mathbb{E}\left[E_{j} E_{j+1}\right]\right)(
$$

and only $\sum_{j=0}^{r-1}\left[E_{j} E_{j+1}\right]$ is unknown. The first order autocorrelation of exposure is

$$
\begin{aligned}
& \left.\left.\mathbb{E}\left[\left(\sum_{j=0}^{r-1} E_{j}-\mathbb{E} \frac{1}{r} \sum_{j^{\prime}=0}^{r-1} E_{j^{\prime}}\right)\right)\left(E_{j+1}-\mathbb{E} \quad \frac{1}{r} \sum_{j^{\prime}=0}^{r-1} E_{j^{\prime}+1}\right)\right)\right](\\
& \left.\left.\left.\left.E_{j}-\mathbb{E} \quad \frac{1}{r} \sum_{j^{\prime}=0}^{r-1}\left(E_{j^{\prime}}\right)\right)^{2}\right)\right]^{\frac{1}{2}}\left[\mathbb{E}\left(\left(\sum_{j=0}^{r-1} E_{j+1}-\mathbb{E} \quad \frac{1}{r} \sum_{j^{\prime}=0}^{r-1} E_{j^{\prime}+1}\right)\right)^{2}\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

It can be shown that

$$
\left.\mathbb{E} \frac{1}{r} \sum_{j^{\prime}=0}^{r-1} E_{j^{\prime}}\right)\left(=\left((r+1) \bar{p}_{e}-p_{e r}\right) / r\right.
$$

and

$$
\left.\mathbb{E} \frac{1}{r} \sum_{j^{\prime}=0}^{r-1} E_{j^{\prime}+1}\right)\left(=\left((r+1) \bar{p}_{e}-p_{e 0}\right) / r\right.
$$

so that the numerator of $\rho_{e_{1}}$ becomes

$$
\frac{1}{r} \sum_{j=0}^{r-1} \mathbb{E}\left[E_{j} E_{j+1}\right]-\left(\frac{(r+1) \bar{p}_{e}-p_{e r}}{r}\right)\left(\frac{(r+1) \bar{p}_{e}-p_{e 0}}{r}\right) .
$$

With the results above and the fact that $\sum_{j=0}^{r-1} E_{j}^{2}=\sum_{j=0}^{r-1} \boldsymbol{E}_{j}$ we can simplify the numer-
ator of $\rho_{e_{1}}$ and obtain
and

$$
\begin{aligned}
& \sum_{j=0}^{r-1} \notin\left[E_{j} E_{j+1}\right]=\frac{\rho_{e_{1}}}{r} \\
& \sqrt{\left((r+1) \bar{p}_{e}-p_{e r}\right)\left(r-\left((r+1) \bar{p}_{e}-p_{e r}\right)\right)} \sqrt{\left((r+1) \bar{p}_{e}-p_{e 0}\right)\left(r-\left((r+1) \bar{p}_{e}-p_{e 0}\right)\right)}+ \\
& \quad\left(\frac{(r+1) \bar{p}_{e}-p_{e r}}{r}\right)\left((r+1) \bar{p}_{e}-p_{e 0}\right) .
\end{aligned}
$$

Thus, with the additional parameter $\rho_{e_{1}}$, the only unknown part of σ_{1}^{2}, which was shown to be $\sum_{j=0}^{r-1}\left[E_{j} E_{j+1}\right]$, is exactly determined.

Web Appendix F Proof that σ_{1}^{2} is maximized at the upper bound of ρ_{e} if $v^{j j^{\prime}} \leqslant 0 \forall j \neq j^{\prime}$ for models (2.2) and (2.4); or if $m^{j j^{\prime}} \leqslant$ $0 \forall j \neq j^{\prime}$ for models (2.3) and (2.5). These conditions hold for CS and appear to hold for DEX

For model (2.2) we have from equation (3.1) that

$$
\sigma_{1}^{2}=\frac{\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}}\right.}{\left.\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}}\right)\left(\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(0 j^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)-\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} p_{e j}\right)\right)^{2}},
$$

where $v^{j j^{\prime}}$ are the elements of $\boldsymbol{\Sigma}^{-1}$. When $p_{e j} \forall j$ are fixed, σ_{1}^{2} will be affected by changes in ρ_{e} only through $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$, since $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]$ is the only component of σ_{1}^{2} affected by changes in the exposure distribution. Since Σ^{-1} is positive definite, $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}}>0\right.$ and a decrease in $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ increases σ_{1}^{2}, so in order to maximize σ_{1}^{2} we need to minimize $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}{ }^{\prime} j^{\prime} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]$. In addition, since $\mathbb{E}\left[E_{j} E_{j}\right]=p_{e j}$ and $p_{e j} \forall j$ are fixed, only $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left(j^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ needs to be min-
imized. If $v^{j j^{\prime}} \leqslant 0 \forall j \neq j^{\prime}$, then $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]$ will be minimized when all terms $\mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \forall j \neq j^{\prime}$ take their upper bound, $\min \left(p_{e j}, p_{e j^{\prime}}\right)$. As derived in Web Appendix C.6,

$$
\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} \notin\left[E_{j} E_{j^{\prime}}\right]=\bar{p}_{e} r(r+1)\left[\bar{p}_{e}\left(1-\rho_{e}\right)+\rho_{e}\right]
$$

so

$$
\rho_{e}=\frac{1}{\left(1-\bar{p}_{e}\right)}\left[\frac{\sum_{==0} \sum_{j^{\prime} \neq j} \notin\left[E_{j} E_{j^{\prime}}\right]}{\bar{p}_{e} r(x+1)}-\bar{p}_{e}\right] .
$$

Therefore, when all terms $\mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \forall j \neq j^{\prime}$ are equal to their upper bound, so does ρ_{e}. The proof is the same for model (2.4) once we realize that the formula for σ_{1}^{2} derived in Web Appendix C. 3 only depends on ρ_{e} through the term $e=$ $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(u^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ after $p_{e j} \forall j$ are fixed. This term is the same one we studied for $\operatorname{model}(2.2)$ and the same reasoning applies.

The off-diagonal elements of the inverse of CS matrix are all equal to $\frac{1}{\sigma^{2}} \frac{-\rho}{(1-\rho)(1+r \rho)}$ and therefore are all negative. For DEX, we performed a grid search for values of $r \leqslant 50$ and ρ and θ in $[0,1]$ and found that the off-diagonal elements of the inverse were always smaller than or equal to zero.

For model (2.3), we have from equation (3.2) that

$$
\sigma_{1}^{2}=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)^{-1}
$$

Proceeding as for model (2.2), σ_{1}^{2} will be maximized when $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left\{m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ is minimized. If $m^{j j^{\prime}} \leqslant 0 \forall j \neq j^{\prime}$, then $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j}\left(m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ will be minimized when all terms $\mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \forall j \neq j^{\prime}$ are equal to thetr upper bound, in which case ρ_{e} will
also take its upper bound. For model (2.5), we have from formula (3.3) that

$$
\sigma_{1}^{2}=\frac{\sum_{j=0}^{r}\left(\sum_{j^{\prime}=0}^{r} j j^{\prime} m^{j j^{\prime}}\right.}{\left.\sum_{j=0}^{r}\left(\sum_{j^{\prime}=0}^{r} j j^{\prime} m^{j j^{\prime}}\right) \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)-\sum_{j=0}^{r}\left(\sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime} j^{\prime}} p_{e j}\right)\right)^{2}},
$$

and this formula only depends on ρ_{e} through $\sum_{j=0}^{r} \sum_{j^{\prime} \neq j} m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]$ in the same way as model (2.3) did, so the same reasoning applies.

The off-diagonal elements of the inverse of the matrix M under CS are $\frac{-1}{\sigma^{2}(1-\rho)(r+1)}$, as derived in Web Appendix C.7, so they are all negative. For DEX, we performed a grid search for values of $r \leqslant 50$ and ρ and θ in $[0,1]$ and found that the off-diagonal elements of M were always smaller than or equal to zero.

Web Appendix G Upper bounds for σ_{1}^{2}

Web Appendix G. 1 Optimization problem to solve to find the upper bound for σ_{1}^{2} for known ρ_{e} and $p_{e j} \forall j$ for model (2.2)

We want to find an upper bound for σ_{1}^{2} when ρ_{e} and $p_{e j} \forall j$ are known. The only part of σ_{1}^{2} in (3.1) that is not fixed is $\sum_{j=0}^{r}\left(\sum_{j^{\prime}=0}^{r} v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$, and since $\mathbb{E}\left[\not \mathscr{\psi}_{j}^{2}\right]=p_{e j}$, the only non-fixed part is $2 \sum_{j=0}^{r-1}\left(\sum_{i^{\prime}=j+1}^{r}\left(c^{\left\langle j^{\prime}\right.} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)\right.$. The unknowns in this problem are the $r(r+1) / 2$ subdiagonal elements of the symmetric matrix \mathbf{E},

$$
\mathbf{E}=\left(\begin{array}{cccc}
p_{e 0} & & & \tag{G.1}\\
\mathbb{E}\left[E_{0} E_{1}\right] & p_{e 1} & & \\
\vdots & & \ddots & \\
\left(\mathbb{E}\left[E_{0} E_{r}\right]\right. & \cdots & \mathbb{E}\left[E_{r} E_{r-1}\right] & p_{e r}
\end{array}\right) ?(
$$

There are some constraints in this matrix. Fixing ρ_{e} and $p_{e j} \forall j$ fixes $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} \in\left[E_{j} E_{j^{\prime}}\right]$
(Web Appendix C.6), giving the equality constraint

$$
\begin{equation*}
\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} \notin\left[E_{j} E_{j^{\prime}}\right]=\bar{p}_{e}(r+1)\left[1+\bar{p}_{e} r\left(1-\rho_{e}\right)+\rho_{e} r\right] . \tag{G.2}
\end{equation*}
$$

There exist upper and lower bounds for the correlations of binary variables, which are

$$
\begin{array}{r}
\max -\sqrt{\frac{p_{e j} p_{e j^{\prime}}}{\left(1-p_{e j}\right)\left(1-p_{e j^{\prime}}\right)}},-\sqrt{\left.\frac{\left(1-p_{e j}\right)\left(1-p_{e j^{\prime}}\right)}{p_{e j} p_{e j^{\prime}}}\right) \leqslant \rho_{e j, e_{j^{\prime}}}} \\
\leqslant \min \sqrt{\frac{\left(p_{e j}\left(1-p_{e j^{\prime}}\right)\right.}{\left(1-p_{e j}\right) p_{e j^{\prime}}}}, \sqrt{\left.\frac{\left(1-p_{e j}\right) p_{e j^{\prime}}}{p_{e j}\left(1-p_{e j^{\prime}}\right)}\right)}
\end{array}
$$

${ }^{8}$. Expressed in terms of $\mathbb{E}\left[E_{j} E_{j^{\prime}}\right]$, the condition is equivalent to

$$
\left.\begin{array}{rl}
\max \left(-p_{e j} p_{e j^{\prime}},-\left(1-p_{e j}\right)\left(1-p_{e j^{\prime}}\right)\right)+ & p_{e j} p_{e j^{\prime}}
\end{array} \leqslant \mathbb{E}\left[E_{j} E_{j^{\prime}}\right] .\right]\left(p_{e j}\left(1-p_{e j^{\prime}}\right),\left(1-p_{e j}\right) p_{e j^{\prime}}\right)+p_{e j} p_{e j^{\prime}} .
$$

which is equivalent to $\max \left(0,-\left(1-p_{e j}-p_{e j^{\prime}}\right)\right) \leqslant \mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \leqslant \min \left(p_{e j}, p_{e j^{\prime}}\right)$. The constraints can be incorporated as

$$
\begin{gather*}
\mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \geqslant 0 \forall j, j^{\prime} ; \tag{G.3}\\
p_{e j}+p_{e j^{\prime}}-1 \leqslant \mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \forall j, j^{\prime} ; \tag{G.4}\\
\mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \leqslant p_{e j} \forall j, j^{\prime} ; \tag{G.5}\\
\mathbb{E}\left[E_{j} E_{j^{\prime}}\right] \leqslant p_{e j^{\prime}} \forall j, j^{\prime}, \tag{G.6}
\end{gather*}
$$

The correlation matrix still needs another set of constraints so that the probability of at least m variables being one is not greater than one. This condition can be expressed as, for all possible choice of m indices l_{1}, \ldots, l_{m} out of $(0,1, \ldots, r)$,

$$
\begin{equation*}
\sum_{j=1}^{m} \phi_{e, l_{j}}-1 \leqslant \sum_{j=1}^{m-1} \sum_{j^{\prime}=j+1}^{m} \mathbb{E}\left[{\boldsymbol{\not} l_{j}} E_{l_{j^{\prime}}}\right](3 \leqslant m \leqslant r \tag{G.7}
\end{equation*}
$$

${ }^{5}$. This implies

$$
\binom{r+1}{3}\left(+\cdots+\binom{r+1}{r}\left(=2^{r+1}-\frac{(r+1)(r+2)}{2}-2\right.\right.
$$

linear constraints. We define \mathbf{b} as the vector of unknowns, $\mathbf{b}^{\prime}=$ $\left(\mathbb{E}\left[E_{0} E_{1}\right], \mathbb{E}\left[E_{0} E_{2}\right], \ldots, \mathbb{E}\left[E_{0} E_{r}\right], \mathbb{E}\left[E_{1} E_{2}\right], \ldots, \mathbb{E}\left[E_{1} E_{r}\right], \ldots, \mathbb{E}\left[E_{r-1} E_{r}\right]\right)$. Then the optimization problem is $\min _{\mathbf{b}} \sum_{j=0}^{r-1} \sum_{j^{\prime}=j+1}^{r}\left(\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)\right.$ subject to the constraints (G.2)-(G.7). The optimization function is a linear function of the unknowns, and the equality and inequality constraints are all linear. Our software solves this linear programming problem with the simplex algorithm using the "simplex" command of the "boot" library in R^{9}. The constraints we included are necessary constraints for the covariance matrix of the exposure process to be positive definite, but they are not sufficient ${ }^{8}$.

Web Appendix G. 2 Upper bound for σ_{1}^{2} for known $p_{e j} \forall j$ and ρ_{e} for model (2.3)

The formula for σ_{1}^{2} is $\sigma_{1}^{2}=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)^{-1}$. To maximize σ_{1}^{2}, we just need to minimize $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left\{n^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$. The procedure is equivalent to the one in Web Appendix G.1, we just need to substitute $v^{j j^{\prime}}$ with $m^{j j^{\prime}}$.

Web Appendix G. 3 Upper bound for σ_{1}^{2} for known $p_{e j} \forall j$ and ρ_{e} for model (2.4) with $V\left(t_{0}\right)=0$

From Web Appendix C.3,

$$
\begin{aligned}
& \sigma_{1}^{2}= \\
& \frac{b^{2} s^{2}-a\left(c s^{2}+a V\left(t_{0}\right)\right)}{\left(b^{2} e+c\left(d^{2}-a e\right)-2 b d f+a f^{2}\right) s^{2}-2(b d-a f) g s \sqrt{V\left(t_{0}\right)}+a\left(d^{2}-a e+g^{2}\right) V\left(t_{0}\right)} .
\end{aligned}
$$

When $V\left(t_{0}\right)=0$, this reduces to

$$
\sigma_{1}^{2}=\frac{a c-b^{2}}{e\left(a c-b^{2}\right)-c d^{2}+2 b d f-a f^{2}},
$$

where $a=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}}, b=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} \rho v^{j j^{\prime}}, c=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(j j^{\prime} v^{j j^{\prime}}, d=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} p_{e j}\right),(\right.\right.$ $e=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right], f=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} \rho_{e j} j^{\prime} v^{j j^{\prime}}\right.$. If the prevalence at each time point is known, only $e=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left({ }^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ is not completely specified. In order to find an upper bound to $\sigma_{1}^{2}, e=\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(v^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ needs to be minimized for a known value ρ_{e}. This problem reduces to the same problem solved in Web Appendix G.2.

Web Appendix G. 4 Upper bound for σ_{1}^{2} for known $p_{e j} \forall j$ and ρ_{e} for model (2.5)

For model (2.5) we have, according to equation (3.3) that

$$
\sigma_{1}^{2}=\frac{\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(j j^{\prime} m^{j j^{\prime}}\right.}{\left.\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r} j j^{\prime} m^{j j^{\prime}}\right) \sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right)-\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left(m^{\left.\left.j j^{\prime} j^{\prime} p_{e j}\right)\right)^{2}} .\right.}
$$

If the prevalence at each time point is known, only $\sum_{j=0}^{r} \sum_{j^{\prime}=0}^{r}\left[m^{j j^{\prime}} \mathbb{E}\left[E_{j} E_{j^{\prime}}\right]\right.$ is not fully specified. The problem of finding an upper bound for a given value of ρ_{e} reduces to the same problem solved in Web Appendix G.3.

Web Appendix H Demonstration of program use

More information can be found in the user's manual at http://www.hsph. harvard.edu/faculty/spiegelman/optitxs.html.

In this example, we compute the power of a study with 31 participants and 14 postbaseline measures, assuming CS covariance structure of the response, to detect a 10

$\mathrm{L} /$ min decrease in PEF associated with vaccuuming. We use model (2.3), assuming CMD, no effect of time and assume that interest is in the within-subject effect of exposure. This example is based on the dataset used in section 4 .

```
> long.power()
* By just pressing <Enter> after each question, the default value,
    shown between square brackets, will be entered.
* Press <Esc> to quit
Enter the total sample size (N) [100]: 31
Enter the number of post-baseline measures (r) [1]: 14
Enter the time between repeated measures (s) [1]: 1
Is the exposure time-invariant (1) or time-varying (2) [1]? 2
Do you assume that the exposure prevalence is constant over time
    (1), that it changes linearly with time (2), or you want to enter
    the prevalence at each time point(3) [1]? 1
Enter the mean exposure prevalence (0<pe<1) [0.5]: . 37
Enter the intraclass correlation of exposure (-0.066<rho.e<1)
    [0.5]: . 13
Constant mean difference (1) or Linearly divergent difference (2)
    [1]: 1
Which model are you basing your calculations on:
(1) Model without time. No separation of between- and within-
        subject effects
(2) Model without time. Within-subject contrast only
(3) Model with time. No separation of between- and within-subject
        effects
(4) Model with time. Within-subject contrast only
Model [1]: 2
Will you specify the alternative hypothesis on the absolute (beta
    coefficient) scale (1) or the relative (percent) scale (2) [1]? 1
Enter the value of the coefficient of interest in your model, i.e.
    the difference between exposed and unexposed periods (beta)
    [0.1]: 10
Which covariance matrix are you assuming: compound symmetry (1),
```

```
    damped exponential (2) or random slopes (3) [1]? 1
Enter the residual variance of the response given the assumed
    model covariates (sigma2) [1]: 4570
Enter the correlation between two measures of the same subject
    (0<rho<1) [0.8]: . 88
Power = 0.9796308
Do you want to continue using the program (y/n) [y]? n
```


References

1 Verbeke G, Spiessens B, Lesaffre E. Conditional linear mixed models. The American Statistician. 2001;55(1):25-34.

2 Seber GAF. Multivariate observations. New York: Wiley; 1984.
3 Hu GY, O'Connell RF. Analytical inversion of symmetric tridiagonal matrices. Journal of Physics A: Mathematical and General. 1996;29:1511-3.

4 Ridout MS, Demetrio CG, Firth D. Estimating intraclass correlation for binary data. Biometrics. 1999;55(1):137-48.

5 Leisch F, Weingessel A, Hornik K. On the generation of correlated artificial binary data. Working Paper Series, SFB "Adaptive Information Systems and Modelling in Economics and Management Science". 1998;13.

6 Higham NJ. Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications. 1988;103:103-18.

7 Graybill FA. Matrices with applications in statistics. 2nd ed. Belmont, Calif.: Wadsworth; 1983.

8 Orasch M, Leisch F, Weingessel A. On specifying correlation matrices for binary data. Working Paper Series, SFB "Adaptive Information Systems and Modelling in Economics and Management Science". 1999;53.

9 R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2006.

