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Web Appendix A Intraclass correlation 

Web Appendix A.1 Relationship between correlation coefficient 
and intraclass correlation when the exposure 
prevalence is not constant over time 

If the prevalence of exposure is not constant over time but the exposure process fol-� �p p
lows CS, we have E [Ej Ej0 ] = ρx pej (1 − pej ) pej0 (1 − pej0 ) + pej pej0 , where ρx 

is the common correlation between exposures at different time points. From Web 
rP P 

Appendix C.6, we have E [Ej Ej0 ] = p̄er (r + 1) [p̄e(1 − ρe) + ρe]. Therefore, 
j=0 j0=6 j 

we have that 

r q q rXX XX 
ρx pej (1 − pej ) pej0 (1 − pej0 ) + pej pej0 = 

j=0 j0=6 j j=0 j0 6=j 

p̄er (r + 1) [p̄e(1 − ρe) + ρe] . 

Solving for ρx, we have 
rP P 

p̄er (r + 1) [p̄e(1 − ρe) + ρe] − pej pej0 

j=0 j0=6 j
ρx = .Pr P p p

pej (1 − pej ) pej0 (1 − pej0 ) 
j=0 j0=6 j 

Note that if pej = pe ∀j then ρx = ρe. Equivalently one can deduce 
r rP P p p P P 

2ρx pej (1 − pej ) pej0 (1 − pej0 ) + pej pej0 − p̄er (r + 1) 
j=0 j0=6 j j=0 j0 6=j

ρe = . 
p̄er (r + 1) (1 − p̄e) 
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Web Appendix A.2 Upper bound for ρe 

For binary variables, we have the constraint E [Ej Ej0 ] 6 min (pej , pej0 ) ∀j, j0 . In 

Web Appendix C.6 we derived the equality 
rXX 

E [Ej Ej0 ] = p̄er (r + 1) [p̄e(1 − ρe) + ρe] , 
j=0 j0 6=j 

from where it can be deduced that 
rP⎡ ⎤P 

E [Ej Ej0 ] 
j=0 j0 6=j − p̄e 

p̄er (r + 1) 

⎢⎢⎣ ⎥⎥⎦1 
1 − p̄e 

ρe = . 

Then, it is easily shown that ⎡ ⎤Pr
j=0 j0=6 j 

P 
min (pej , pej0 )⎢⎢⎣ ⎥⎥⎦1 

ρe 6 − p̄e . 
1 − p̄e p̄er (r + 1) 

r

Now, X X 

P 

r−1

min (pej , pej0 ) = 2 rpe(0) + (r − 1)pe(1) + · · · + pe(r−1) = 2 (r − j)pe(j), 
j=0 j0 6 j=0=j 

where pe(j) is the jth order statistic. Then, 

r−1

X � 

⎤⎡ ⎢⎢⎢⎣ 
2 (r − j)pe(j) 

j=0 

p̄er (r + 1) 
− p̄e 

⎥⎥⎥⎦ . 1 
ρe 6 

1 − p̄e 

Web Appendix B Equivalence of conditional likeli-
hood and a model on differences 

1 proved this equivalence for the mixed effects model, where Σi = ZiDZ
0 
i + σw

2 I. 

This model has the special feature that conditional on the random effects, the ob-

servations are independent. The DEX model does not follow this structure. The 
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proof given here is for a general response covariance matrix, Σi , and thus ex-

tends their results. Suppose that we have subject-specific intercepts ai, which can 

be fixed or random, and assume that E (Yi) = ai1 + Xiβ, where 1 is a vector of 

ones, Xi a matrix of covariates and β a vector of regression parameters. Assum-

ing normality of Yi and V ar (Yi) = Σi, the probability density function has the 

expression � � 
1 1 

f (Yi|ai, Xi) = exp − (Yi − ai1 − Xiβ)0 Σi 
−1 (Yi − ai1 − Xiβ) = r+1 

|Σi|1/2 2(2π) 2 

1 
r+1 

|Σi|1/2(2π) 2 

h 
0 0 −1 2 −1

exp 

� 
− 

1
(Yi − Xiβ) Σi 

−1 (Yi − Xiβ) − 2 (Yi − Xiβ) Σi ai1 + ai 1
0Σi 1 

i� 
. 

2 

By the factorization theorem, a sufficient statistic for ai is si = Yi
0Σi 

−11 = 10Σi 
−1Yi. 

The sufficient statistic si is distributed as a univariate normal with expected value 

10Σi 
−1 ai1 + 10Σi 

−1Xiβ and variance 10Σi 
−11. Then, the density of Yi conditioning 

on the sufficient statistic si is 

1 
r+1f (Yi|ai, Xi) (2π) 2 |Σi|1/2 

f (Yi|si, Xi) = = 
f (si|ai, Xi) 1 

1 1/2 
(2π) 2 |10Σi 

−11|� � �� 
−1 0 0 −1 2 −1exp (Yi − Xiβ) Σi 

−1 (Yi − Xiβ) − 2 (Yi − Xiβ) Σi ai1 + a 10Σi 12 � �i = 
1 

� −1 
�2 

exp − 10Σi 
−1Yi − 10Σi ai1 − 10Σi 

−1Xiβ 
2(10Σi 

−11) � −1
��1/2 � � � ��10Σi 1 1 � �−1 0 −1 −1−11r exp − (Yi − Xiβ) Σi 

−1 − Σi 10Σi 1 10Σi (Yi − Xiβ) . 
|Σi|1/2 2(2π) 2 

Using property B.3.5 of 2 , page 536, 

� �−1−1 −1 −1−11Σi 
−1 − Σi 10Σi 1 10Σi = Δ0 (ΔΣiΔ

0) Δ, 

3 



  

  

we can write then the conditional likelihood as 

L (β|s1, . . . , sN , X) = � �
N −1 �1/2Y �10Σi 1 

� 
1 

� 
r exp − (Yi − Xiβ)0 Δ0 (ΔΣiΔ

0)
−1 
Δ (Yi − Xiβ) 

2(2π) |Σi|1/2 2 
i=1 

and the log-likelihood log L (β|s1, . . . , sN , X) will then be proportional to � � N � �XN � −1 � N 1 0 −1
log �10Σi 1�− log |Σi| − (Yi − Xiβ) Δ0 (ΔΣiΔ

0) Δ (Yi − Xiβ) . 
2 2 2 

i=1 

The maximum likelihood estimator of β is !− ! 
N � � N � �X X −1 −1

β̂ = X0 iΔ
0 (ΔΣiΔ

0) ΔXi X0 iΔ
0 (ΔΣiΔ

0) ΔYi 

i=1 i=1 

and !− !−� � N � � NX X 
ˆ X0

−1
V ar β = iΔ

0 (ΔΣiΔ
0) ΔXi = (X0 iMiXi) , 

i=1 i=1 

where the notation A− indicates the generalized inverse of A. Note that ΔXi will 

contain columns of zeros for those variables that are time-invariant, and first order 

differences for the time-varying variables. It is readily seen that, when Σi is known, � � 
β̂ and V ar β̂ from the conditional approach are equivalent to the solution to the 

regression of ΔYi on ΔXi by GLS using the covariance matrix ΔΣiΔ
0 . 

Web Appendix C Derivation of formulas for σ2 
1 

Web Appendix C.1 Model (2.2) 

The [g, h] term of the matrix EX [X
0 
iΣ
−1Xi] can be written as 

r Pr �P � 
vjj0 E [xijgxij0h] , where xijg is the value of the gth covariate for sub-

j=0 j0=0 

ject i at time j. Model (2.2) contains only two covariates, a column of ones and 
r rP P 

jj0the column of exposures. The [1,1] component of EX [X
0 
iΣ
−1Xi] is v , 

j=0 j0=0 
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r r � �P P 
the [2,1] and [1,2] components are vjj0 pej and the [2,2] component is 

j=0 j0=0 
r rP P 

jj0 v E [EjEj0 ]. Then, the [2,2] component of the inverse is 
j=0 j0=0 

r rP P 
jj0 v

j=0 j0=0 
ΣB [2, 2] = σ1

2 = ! ! !2 . 
r r r r r rP P P P P P 

jj0 jj0 E [Ej Ej0 ] jj0 v v − (v pej ) 
j=0 j0=0 j=0 j0=0 j=0 j0=0 

Web Appendix C.2 Model (2.3) 

Based on Web Appendix B, ΣB = (E [Xi
0 MXi])

− . In model (2.2), Xi contains a 

column of ones and the column of exposures at the previous time point. Since 

Δ1 = 0 , ⎛ ⎞ 
0 0 

r rE [Xi
0 MXi] = ⎝ P P 

jj0 ⎠ ,0 m E [Ej Ej0 ] 
j=0 j0=0 

and the [2,2] component of the (E [X0 iMXi])
− is 

r r
!−1XX 

σ1
2 = mjj0 E [Ej Ej0 ] . 

j=0 j0=0 

Web Appendix C.3 Model (2.4) 

Model (2.4) contains a column of ones, the column of exposures and the col-

umn of times, and the [g, h] term of the matrix EX [X
0 
iΣ
−1Xi] can be written as 

r rP P � � 
jj0 v E [xijgxij0h] . The [1,1], [1,2] , [2,1] and [2,2] components were derived 

j=0 j0=0 

in Web Appendix C.1. The [3,1] and [1,3] components are 

Xr r � r r � r r r rX � XX � XX XX 
jj0 jj0 jj0 jvjj0 v E [tj ] = v E [t0 + sj] = E [t0] v + s . 

j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 
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The [3,2] and [2,3] component are 

r r � � r r � � 
jj0 jj0 

XX XX 
v E [Ej tj0 ] = v E [Ej (t0 + sj0)] = 

j=0 j0=0 j=0 j0=0 

r r � � r rXX XX 
jj0 jj0 v E [Ej t0] + s pej j

0 v . 
j=0 j0=0 j=0 j0=0 

Without loss of generality, the time variable can be centered at the mean initial 

time so that E [t0] = 0 and E [t20] = V (t0). Defining ρej ,t0 as the correlation between 

initial time (or age at entry) and exposure at the jth time, then the [3,2] and [2,3] 

components are 

r r � q � r rp XX XX 
jj0 jj0 V (t0) ρej ,t0 pej (1 − pej )v + s pej j

0 v . 
j=0 j0=0 j=0 j0=0 

The [3,3] component is 

r r � � � r r r r r rXX � XX XX XX 
jj0 2 jj0 2 jj0 v E [tj tj0 ] = E t0 v + 2sE [t0] jvjj0 + s jj0 v . 

j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 

r r r r r r r rP P P P P P P P
jj0 jj0 jj0Let a = v , b = jvjj0 , c = jj0v , d = v pej , 

j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 
r r r r r rP P P P P P p

jj0 jj0 jj0 e = v E [Ej Ej0 ], f = pej j
0v and g = ρej ,t0 pej(1 − pej )v . 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

Then, 

ΣB [2, 2] = σ1
2 = 

b2s2 − a (cs2 + aV (t0)) p . 
(b2e + c (d2 − ae) − 2bdf + af 2) s2 − 2 (bd − af) gs V (t0) + a (d2 − ae + g2) V (t0) 

If the prevalence of exposure is constant over time, then d = pea and f = peb. 

Therefore, 

b2 2s2 − a (cs + aV (t0))
σ2 = .1 (b2e + c (p2 

ea
2 − ae) − pe

2ab2) s2 + a (pe
2a2 − ae + g2) V (t0) 

If, in addition to the prevalence of exposure being constant over time, V (t0) = 0 or 

= 0 ∀j, then σ2 = 1 , which equals the variance for model (2.2). ρej ,t0 1 e−p2ae 
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Web Appendix C.4 Model (2.5) 

Based on Web Appendix C.1, ΣB = (E [X0 iMXi])
− . In model (2.4), Xi contains a 

column of ones, the column of exposures and the column of times. Since Δ1 = 0, 

we have 10M = 0, i.e. the sum of each column of M is zero. This implies that 

the [1,1], [1,2], [1,3], [2,1] and [3,1] components of E [X0 iMXi] are zero. The [2,2] 
r rP P 

component is mjj0 E [Ej Ej0 ], as derived in Web Appendix C.2. Without loss 
j=0 j0=0 

of generality, the time variable can be centered at the mean initial time so that 

E [t0] = 0 and E [t20] = V (t0). Then, the [2,3] and [3,2] components are 

Xr r � � Xr r � � 
jj0 jj0 

X X 
m E [Ej tj0 ] = m E [Ej (t0 + sj0)] 

j=0 j0=0 j=0 j0=0 Xr r � � r rX XX 
jj0 jj0 = m E [Ej t0] + s pej j

0 m . 
j=0 j0=0 j=0 j0=0 

r rP P 
jj0The first term of the last expression is equal to E [Ej t0] m = 0. The [3,3] 

j=0 j0=0 

term is 
r r � �XX 

jj0 m E [tj tj0 ] 
j=0 j0=0 

r r r r r� � r X XX XXX 
2 jj0 jmjj0 2 jj0 = E t0 m + 2sE [t0] + s jj0 m

j=0 j0=0 j=0 j0=0 j=0 j0=0 

and since the two first elements of this expression are zero, the [3,3] term is 
r rP P

2 jj0 s jj0m . Then, 
j=0 j0=0 ⎛ ⎞ 

0 0 0 
r r r r⎜ P P P P ⎟jj0 jj0⎜ 0 m E [Ej Ej0 ] s pej j

0m ⎟ 
E [X0 iMXi] = ⎜ 

j=0 j0=0 j=0 j0=0 
⎟ ⎜ ⎟ 

r r r r⎝ P P P P ⎠
jj0 2 jj0 0 s pej j

0m s jj0m
j=0 j0=0 j=0 j0=0 
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and the [2,2] component of the (E [X0 iMXi])
− is 

r rP P 
jj0 jj0m

j=0 j0=0 
ΣB [2, 2] = σ1

2 = ! ! !2 . 
r r r r r rP P P P P P 

jj0 jj0 E [Ej Ej0 ] jj0 j0jj0m m − (m pej ) 
j=0 j0=0 j=0 j0=0 j=0 j0=0 

P P 
If the prevalence of exposure is constant over time, then 

r r

mjj0 j0pej = 
j=0 j0=0 

r rP P 
j0 jj0 pe m = pe1

0Mt, and since 10M = 0, the second term in the denominator 
j=0 j0=0 

vanishes. Therefore, 
r r

!−1XX 
σ1

2 = mjj0 E [Ej Ej0 ] , 
j=0 j0=0 

as for model (2.3). 

Web Appendix C.5 Proof that, under CS response, ρej ,ej0 ∀j, j0 do 
not need to be provided for models (2.2)-(2.5), 
but only ρe. Proof that, under CS response, 
pej ∀j do not need to be provided for models 
(2.2)-(2.3) but only p̄e 

First, we derive the form of the matrices Σ−1 and M under CS. If Σ has CS struc-

ture, then Σ−1 has diagonal elements equal to 

1 (r − 1)ρ + 1 
σ2 (1 − ρ) (1 + rρ) 

and off-diagonal elements equal to 

1 −ρ 
. 

σ2 (1 − ρ) (1 + rρ) 

Importantly, the sum of every row or column is the same and equal to 

r r
1X X 

jj0 jj0 v = v = ,
σ2 (1 + rρ)

j=0 j0=0 
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and the sum of all elements of the inverse matrix is 
r rXX r + 1 jj0 v = . 

σ2 (1 + rρ)
j=0 j0=0 

Under CS, the matrix ΔΣΔ0 is a r × r tridiagonal matrix of the form 

σ2(1 − ρ) 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 

2 −1 0 · · · 0 

−1 2 −1 
. . . . . . 

0 −1 2 
. . . 0 

. . . .. . . .. . . . −1 
0 · · · 0 −1 2 

⎞ ⎟⎟⎟⎟⎟⎟⎠ . 

The [j, j0] element of (ΔΣΔ0)−1 is of the form 

1 
[(j + j0 − |j0 − j|) (2r + 2 − |j0 − j| − j − j0)]

4σ2(1 − ρ)(r + 1) 

for j, j0 = 1, . . . , r 3, which can be rewritten as 

1 
[(r + 1)j + (r + 1)j0 − 2jj0 − (r + 1) |j0 − j|] . 

2σ2(1 − ρ)(r + 1) 

If we pre-multiply by Δ0, the [j, j0] element of Δ0 (ΔΣΔ0)−1 is 

1 
2σ2(1 − ρ)(r + 1) 

rX 

X 

(I {k = j} − I {k = j + 1}) ((r + 1)k + (r + 1)j0 − 2kj0 − (r + 1) |j0 − k|), 
k=1 

where I {k = j} is an indicator function that is one if k = j and zero otherwise. 

The last expression can be simplified to 

1 
((r + 1) [|j0 − j − 1| − |j0 − j| − 1] + 2j0) ,

2σ2(1 − ρ)(r + 1) 

for j = 0, . . . , r; j0 = 1, . . . , r. Now, post-multiplying the result by Δ we can derive 

the [j, j0] element of Δ0 (ΔΣΔ0)−1 Δ, which is 

1 
2σ2(1 − ρ)(r + 1) 

r

((r + 1) [|k − j − 1| − |k − j| − 1] + 2k) (I {k = j0} − I {k = j0 + 1}) 
k=1 
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for j = 0, . . . , r; j0 = 0, . . . , r. The last expression simplifies to 

1 
((r + 1) [|j0 − j − 1| + |j0 − j + 1| − 2 |j0 − j|] − 2) . 

2σ2(1 − ρ)(r + 1) 

Note that this expression is r for j0 = j and −1 for j0 6 j. There-= 
σ2(1−ρ)(r+1) σ2(1−ρ)(r+1) 

fore, the matrix M = Δ0 (ΔΣΔ0)−1 Δ has diagonal elements r and off-
σ2(1−ρ)(r+1) 

diagonal elements −1 . It is then easily proven that the sum of any row or 
σ2(1−ρ)(r+1) 

column of M is zero. 

Based on Web Appendix C.1-Web Appendix C.4, the only components that depend 
r r r rP P P P

jj0 jj0 on ρej ,ej0 
∀j, j0 for models (2.2)-(2.5) are v E [Ej Ej0 ] and m E [Ej Ej0 ]. 

j=0 j0=0 j=0 j0=0 

From the form of Σ−1 we have that Xr r � �X 
jj0 v E [Ej Ej0 ] = 

j=0 j0=0 X � � XX(r − 1)ρ + 1 
r

ρ 
r

E Ej 
2 − E [Ej Ej0 ]. 

σ2 [1 + ρ(r − 1) − ρ2r] σ2 (1 + ρ(r − 1) − ρ2r)
j=0 j=0 6j0=j 

r

Since the exposure is binary, then E Ej 
2 = E (Ej) = pej , and E Ej 

2 = 
j=0 

r r

� � P � � 
P P 

pej = (r + 1) p̄e. Now, we define Ei· = Eij as the total number of exposed 
j=0 j=0 

periods for subject i . Then, by the properties of the expectation we have 

E [Ej Ej0 ] = E (E [Eij Eij0 | Ei·]) = E (P (Eij = 1 ∩ Eij0 = 1| Ei·)) � � 
Ei· (Ei· − 1) 1 � � � � 

= E = E Ei
2 
· − E (Ei·) ,

(r + 1)r r(r + 1) 

rP P 
and E [Ej Ej0 ] = E (Ei

2 
·) − E (Ei·). Since E (Ei·) = (r + 1) p̄e, the only addi-

j=0 j0=6 j 

tional unknown for the [2,2] component is E (Ei
2 
·). Instead of providing E (Ei

2 
·), 

we can base the formulas on the intraclass correlation of exposure, which has the 

expression 
E (Ei

2 
·) − (r + 1) p̄e (1 + p̄er)

ρe = 
r(r + 1)p̄e (1 − p̄e) 
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P P4. Then, E (Ei
2 
·) = p̄e (r + 1) (1 + p̄er(1 − ρe) + ρer), 

r

E [Ej Ej0 ] = 
j=0 j0=6 j 

p̄er (r + 1) [p̄e(1 − ρe) + ρe] and we have that 

XXr r
p̄e(r + 1) [1 + ρ (r − 1 − p̄er(1 − ρe) − ρer)]jj0 v E [Ej Ej0 ] = ,

(1 − ρ)σ2 (1 + rρ)
j=0 j0=0 

which only depends on p̄e and ρe. 

From the form of M under CS, we have 

r r r rXX X XX 
jj0 jj jj0 m E [Ej Ej0 ] = m pej + m E [Ej Ej0 ] 

j=0 j0=0 j=0 j=0 6j0=j X XXr 
r

1 
r

= pej − E [Ej Ej0 ]. 
σ2(1 − ρ)(r + 1) σ2(1 − ρ)(r + 1) 

j=0 j=0 j0 6=j 

r rP P P 
Now, pej = (r + 1)p̄e, and as proven above, E [Ej Ej0 ] = 

j=0 j=0 6j0=j 

p̄er (r + 1) [p̄e(1 − ρe) + ρe]. Therefore, 

XXr r
r(r + 1)p̄e p̄er (r + 1) [p̄e(1 − ρe) + ρe]jj0 m E [Ej Ej0 ] = − 

σ2(1 − ρ)(r + 1) σ2(1 − ρ)(r + 1) 
j=0 j0=0 

p̄e(1 − p̄e)r(1 − ρe) 
= 

σ2(1 − ρ) 
, 

which only depend p̄e and ρe. Thus, ρej ,ej0 
∀j, j0 do not need to be provided for 

models (2.2)-(2.5), but only ρe. 

Based on Web Appendix C.1-Web Appendix C.2, the only other component, apart 

from the ones just derived, that may depend on pej ∀j for models (2.2)-(2.3) is 
r rP P 

vjj0 pej , and using the form of Σ−1 under CS we have 
j=0 j0=0 

Xr r r r rX X X X1 (r + 1)p̄ejj0 jj0 v pej = pej v = pej = ,
σ2 (1 + rρ) σ2 (1 + rρ)

j=0 j0=0 j=0 j0=0 j=0 

which only depends on p̄e. Therefore, for models (2.2)-(2.3) under CS, pej ∀j do not 

need to be provided, but only p̄e. 
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Web Appendix C.6 Expression for σ1
2 for model (2.2) under CS co-

variance of the response 

For model (2.2), EX [X
0 
iΣ
−1Xi] is a [2 × 2] matrix. Using the results of Web Ap-

r rP P 
jj0 r+1pendix C.5, the [1,1] component is v = , the [1,2] and [2,1] compo-

σ2(1+rρ)
j=0 j0=0 

nent are XXr r
(r + 1)p̄ejj0 v pej = ,

σ2 (1 + rρ)
j=0 j0=0 

and the [2,2] component is XXr r
p̄e(r + 1) [1 + ρ (r − 1 − p̄er(1 − ρe) − ρer)]jj0 v E [Ej Ej0 ] = . 

(1 − ρ)σ2 (1 + rρ)
j=0 j0=0 

Then, the [2,2] component of the inverse of EX [X
0 
iΣ
−1Xi] is 

σ2(1 − ρ) (1 + rρ)
σ2 = .1 p̄e (1 − p̄e) (r + 1) (1 − ρ (1 − r + rρe)) 

Web Appendix C.7 Variance formula for model (2.3) under CS co-
variance of the response 

Using the results of Web Appendix C.5, the formula for σ1
2 for model (2.3) derived 

in Web Appendix C.2 reduces to 

r r
!−1XX 

jj0 σ2(1 − ρ) 
m E [Ej Ej0 ] = 

p̄e(1 − p̄e)r(1 − ρe)j=0 j0=0 

when CS of the response is assumed. 

Web Appendix D Generation of arbitrary prevalence 
vectors and correlation matrices 

Arbitrary prevalence vectors can easily be generated by drawing numbers from a 

Uniform[0, 1]. Arbitrary correlations matrices for binary data are more difficult 
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to generate because they involve a lot of constraints5. Thus, we proceeded by 

first generating valid arbitrary covariance matrices for a multivariate normal dis-

tribution, and then deriving the covariance matrix that results from dichotomizing 

each of the normal variables so that a given prevalence at each time point is ob-

tained. To generate arbitrary correlation matrices, random numbers were drawn 

from a Uniform[−1, 1] for each pair of time points. If the resulting correlation ma-

trix was not positive definite, it was transformed to the nearest positive definite 

one6. The process of obtaining the prevalence vector and the covariance matrix of 

the dichotomized variables is described by 5 . To ensure that the space of possi-

ble values of (p̄e, ρe) was evenly covered, prevalence vectors with a narrow range 

of prevalences and correlation matrices with positive and high correlations were 

given more weight. 

Web Appendix E Proof that under AR(1) covariance 
of response and V (t0) = 0, σ2 for1 

models (2.2) and (2.4) is exactly cal-
culated by knowing pej ∀j and ρe1, 
regardless of the covariance of the 
exposure 

If Σ is AR(1), then Σ−1 has the form ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

1 −ρ 0 0 · · · 0 
−ρ 1 + ρ2 −ρ 0 0 

. . .0 −ρ 1 + ρ2 . . . . . 
1 . 

Σ−1 = . .(1 − ρ2) σ2 . . . −ρ0 0 0. 
. .. .. . −ρ 1 + ρ2 −ρ 
0 0 · · · 0 −ρ 1 
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7 page 201. In models (2.2) and (2.4), once pej ∀j is fixed and V (t0) = 0 is assumed, P P 
only the term 

r r

vjj0 E [Ej Ej0 ] is not known in the formula for σ1
2. Since under 

j=0 j0=0 
jj0 jj0 −ρAR(1) v = 0 for |j − j0| > 1, and v = for |j − j0| = 1,

(1−ρ2)σ2 ! Xr r r−1 r−1X X X1 
vjj0 E [Ej Ej0 ] = pe0 + per + (1 + ρ2) pej − 2ρ E [Ej Ej+1] ,

(1 − ρ2) σ2 
j=0 j0=0 j=1 j=0 

r−1P 
and only E [Ej Ej+1] is unknown. The first order autocorrelation of exposure is 

j=0 " !! !!# 
rP−1 r−1 r−1P P

1 1 1E Ej − E Ej0 Ej+1 − E Ej0+1r r r 
j=0 j0=0 j0=0 

=ρe1 ⎡ ⎛ ⎞⎤ 1 ⎡ ⎛ ⎞⎤!!2 !!2 
1 

2 2 
rP−1 r−1 r−1 r−1P P P⎣E ⎝1 Ej − E 1 Ej0 

⎠⎦ ⎣E ⎝1 1 ⎠⎦Ej+1 − E Ej0+1r r r r 
j=0 j0=0 j=0 j0=0 

It can be shown that ! 
r−1X1

E Ej0 = ((r + 1)p̄e − per) /r 
r 

j0=0 

and ! 
r−1X1

E Ej0+1 = ((r + 1)p̄e − pe0) /r, 
r 

j0=0 

so that the numerator of ρe1 becomes 

r−1 � �� �X1 (r + 1)p̄e − per (r + 1)p̄e − pe0E [Ej Ej+1] − . 
r r r 

j=0 

r−1 r−1P P 
With the results above and the fact that Ej 

2 = Ej we can simplify the numer-
j=0 j=0 

ator of ρe1 and obtain 

r−1 � �� �P
1 (r+1)p̄e−per (r+1)p̄e−pe0 

r E [Ej Ej+1] − 
rr 

ρe1 = r j=0 �r� � � 
(r+1)p̄e−per 1 − (r+1)p̄e−per (r+1)p̄e−pe0 1 − (r+1)p̄e−pe0 

r r r r 
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and 

r−1X ρe1E [Ej Ej+1] = 
r 

j=0 p p
((r + 1)p̄e − per) (r − ((r + 1)p̄e − per)) ((r + 1)p̄e − pe0) (r − ((r + 1)p̄e − pe0))+ � � 

(r + 1)p̄e − per 
((r + 1)p̄e − pe0) . 

r 

Thus, with the additional parameter ρe1 , the only unknown part of σ1
2, which was 

r−1P 
shown to be E [Ej Ej+1], is exactly determined. 

j=0 

Web Appendix F Proof that σ2 is maximized at the up-1 
jj0per bound of ρe if v 6 0 ∀j 6= j0 

jj0for models (2.2) and (2.4); or if m 6 
0 ∀j 6= j0 for models (2.3) and (2.5). 
These conditions hold for CS and 
appear to hold for DEX 

For model (2.2) we have from equation (3.1) that 

r rP P 
jj0 v

j=0 j0=0 
σ2 

1 = ! ! !2 , 
r r r r r rP P P P P P 

jj0 jj0 E [Ej Ej0 ] jj0 v v − (v pej ) 
j=0 j0=0 j=0 j0=0 j=0 j0=0 

where vjj0 are the elements of Σ−1 . When pej ∀j are fixed, σ1
2 will be affected by 

r r r rP P P P
jj0 jj0changes in ρe only through v E [Ej Ej0 ], since v E [Ej Ej0 ] is the only 

j=0 j0=0 j=0 j0=0 

component of σ1
2 affected by changes in the exposure distribution. Since Σ−1 is 

r r r rP P P P 
jj0 jj0positive definite, v > 0 and a decrease in v E [Ej Ej0 ] increases σ1

2 , 
j=0 j0=0 j=0 j0=0 P P 

so in order to maximize σ1
2 we need to minimize 

r r

vjj0 E [Ej Ej0 ]. In addition, 
j=0 j0=0 

rP P 
jj0since E [Ej Ej ] = pej and pej ∀j are fixed, only v E [Ej Ej0 ] needs to be min-

j=0 j0=6 j 
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rP P
jj0 jj0imized. If v 6 0 ∀j 6 j0, then v E [Ej Ej0 ] will be minimized when all = 

j=0 j0=6 j 

terms E [Ej Ej0 ] ∀j 6 j0 take their upper bound, min (pej , pej0 ). As derived in Web = 

Appendix C.6, 

rXX 
E [Ej Ej0 ] = p̄er (r + 1) [p̄e(1 − ρe) + ρe] , 

j=0 j0=6 j 

so ⎡ r ⎤P P 
E [Ej Ej0 ]⎢ ⎥1 j=0 6j0=j⎢ ⎥ρe = − p̄e .⎣ ⎦(1 − p̄e) p̄er (r + 1) 

Therefore, when all terms E [Ej Ej0 ] ∀j 6= j0 are equal to their upper bound, so 

does ρe. The proof is the same for model (2.4) once we realize that the formula 

for σ1
2 derived in Web Appendix C.3 only depends on ρe through the term e = 

r rP P 
vjj0 E [EjEj0 ] after pej ∀j are fixed. This term is the same one we studied for 

j=0 j0=0 

model (2.2) and the same reasoning applies. 

The off-diagonal elements of the inverse of CS matrix are all equal to 
σ
1 
2 

−ρ 
(1−ρ)(1+rρ) 

and therefore are all negative. For DEX, we performed a grid search for values of 

r 6 50 and ρ and θ in [0,1] and found that the off-diagonal elements of the inverse 

were always smaller than or equal to zero. 

For model (2.3), we have from equation (3.2) that !−1Xr rX 
jj0 σ1

2 = m E [Ej Ej0 ] . 
j=0 j0=0 

P P 
Proceeding as for model (2.2), σ1

2 will be maximized when 
r

mjj0 E [Ej Ej0 ] is 
j=0 j0=6 j 

rP P 
jj0 jj0minimized. If m 6 0 ∀j 6 j0, then m E [Ej Ej0 ] will be minimized when = 

j=0 j0=6 j 

all terms E [Ej Ej0 ] ∀j =6 j0 are equal to their upper bound, in which case ρe will 
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� 

also take its upper bound. For model (2.5), we have from formula (3.3) that 

r r r r r r

(m
PP 

Pr rP 
PPPP 

jj0 jj0m
j=0 j0=0 

σ2 
1 = ! ! !2 , 

jj0mjj0 mjj0 E [Ej Ej0 ] jj0 j0pej )− 
j=0 j0=0 j=0 j0=0 j=0 j0=0 

r

m
j=0 j0=6 j 

P P
jj0 E [Ej Ej0 ] in the same way and this formula only depends on ρe through 

as model (2.3) did, so the same reasoning applies. 

The off-diagonal elements of the inverse of the matrix M under CS are −1 ,
σ2(1−ρ)(r+1) 

as derived in Web Appendix C.7, so they are all negative. For DEX, we performed a 

Pr rP 

grid search for values of r 6 50 and ρ and θ in [0,1] and found that the off-diagonal 

elements of M were always smaller than or equal to zero. 

Web Appendix G Upper bounds for σ2 
1 

Web Appendix G.1 Optimization problem to solve to find the up-
per bound for σ1

2 for known ρe and pej ∀j for 
model (2.2) 

We want to find an upper bound for σ1
2 when ρe and pej ∀j are known. The only �� 

jj0part of σ1
2 

PP 
in (3.1) that is not fixed is 

r−1 r

E [Ej Ej0 ], and since E E2 
j = pej , the v

j=0 j0=0 � 
E [Ej Ej0 ] . The unknowns in this problem are jj0only non-fixed part is 2 v

j=0 j0=j+1 

the r(r + 1)/2 subdiagonal elements of the symmetric matrix E, 

E = 

⎛ ⎜⎜⎜⎝ 
pe0 

E [E0E1] pe1 
. . . . .. 

E [E0Er] · · · E [ErEr−1] per 
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r rP P 
There are some constraints in this matrix. Fixing ρe and pej ∀j fixes E [Ej Ej0 ] 

j=0 j0=0 

( Web Appendix C.6), giving the equality constraint 

r rXX 
E [Ej Ej0 ] = p̄e (r + 1) [1 + p̄er(1 − ρe) + ρer] . (G.2) 

j=0 j0=0 

There exist upper and lower bounds for the correlations of binary variables, which 

are s !r 
pej pej0 (1 − pej )(1 − pej0 ) 

max − , − 6 ρej ,ej0(1 − pej )(1 − pej0 ) pej pej0 s s ! 
pej (1 − pej0 ) (1 − pej )pej06 min ,
(1 − pej )pej0 pej (1 − pej0 ) 

8. Expressed in terms of E [Ej Ej0 ], the condition is equivalent to 

max (−pej pej0 , −(1 − pej )(1 − pej0 )) + pej pej0 6 E [Ej Ej0 ] 

6 min (pej (1 − pej0 ), (1 − pej )pej0 ) + pej pej0 

which is equivalent to max (0, −(1 − pej − pej0 )) 6 E [Ej Ej0 ] 6 min (pej , pej0 ). The 

constraints can be incorporated as 

E [Ej Ej0 ] > 0 ∀j, j0; (G.3) 

pej + pej0 − 1 6 E [Ej Ej0 ] ∀j, j0; (G.4) 

E [Ej Ej0 ] 6 pej ∀j, j0; (G.5) 

E [Ej Ej0 ] 6 pej0 ∀j, j0 . (G.6) 

The correlation matrix still needs another set of constraints so that the probability 

of at least m variables being one is not greater than one. This condition can be 

expressed as, for all possible choice of m indices l1, . . . , lm out of (0, 1, . . . , r), 

m m−1 mX X X h i 
pe,lj − 1 6 E Elj Elj0 

, 3 6 m 6 r (G.7) 
j=1 j=1 j0=j+1 
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5. This implies � � � � 
r + 1 r + 1 (r + 1)(r + 2) 

+ · · · + = 2r+1 − − 2 
3 r 2 

linear constraints. We define b as the vector of unknowns, b0 = 

(E [E0E1] , E [E0E2] , . . . , E [E0Er] , E [E1E2] , . . . , E [E1Er] , . . . , E [Er−1Er]). Then the 
r−1 r � �P P 

jj0optimization problem is min v E [Ej Ej0 ] subject to the constraints 
b j=0 j0=j+1 

(G.2)-(G.7). The optimization function is a linear function of the unknowns, and 

the equality and inequality constraints are all linear. Our software solves this linear 

programming problem with the simplex algorithm using the “simplex” command 

of the “boot” library in R9. The constraints we included are necessary constraints 

for the covariance matrix of the exposure process to be positive definite, but they 

are not sufficient8. 

Web Appendix G.2 Upper bound for σ1
2 for known pej ∀j and ρe 

for model (2.3) 

!−1 
r rP P 

The formula for σ2 is σ2 = mjj0 E [Ej Ej0 ] . To maximize σ2, we just need 1 1 1 
j=0 j0=0 

r rP P 
jj0to minimize m E [Ej Ej0 ]. The procedure is equivalent to the one in Web 

j=0 j0=0 
jj0 jj0Appendix G.1, we just need to substitute v with m . 

Web Appendix G.3 Upper bound for σ1
2 for known pej ∀j and ρe 

for model (2.4) with V (t0) = 0 

From Web Appendix C.3, 

σ2 = 

b2s2 − a (cs2 + aV (t0)) p . 
(b2e + c (d2 − ae) − 2bdf + af 2) s2 − 2 (bd − af) gs V (t0) + a (d2 − ae + g2) V (t0) 
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When V (t0) = 0, this reduces to 

ac − b2 

σ2 = ,1 e (ac − b2) − cd2 + 2bdf − af 2 

r r r r r r r rP P P P P P P P � � 
jj0 jvjj0 jj0 jj0where a = v , b = , c = jj0v , d = v pej , 

j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 
r r r rP P P P 

jj0 jj0 e = v E [Ej Ej0 ], f = pej j
0v . If the prevalence at each time point is 

j=0 j0=0 j=0 j0=0 P P 
known, only e = 

r r

vjj0 E [Ej Ej0 ] is not completely specified. In order to find 
j=0 j0=0 P P 

an upper bound to σ1
2 , e = 

r r

vjj0 E [Ej Ej0 ] needs to be minimized for a known 
j=0 j0=0 

value ρe. This problem reduces to the same problem solved in Web Appendix G.2. 

Web Appendix G.4 Upper bound for σ1
2 for known pej ∀j and ρe 

for model (2.5) 

For model (2.5) we have, according to equation (3.3) that 
r rP P 

jj0 jj0m
j=0 j0=0 

σ2 
1 = ! ! !2 . 

r r r r r rP P P P P P 
mjj0 E [Ej Ej0 ] (mjj0jj0mjj0 − j0pej ) 

j=0 j0=0 j=0 j0=0 j=0 j0=0 P P 
If the prevalence at each time point is known, only 

r r

mjj0 E [Ej Ej0 ] is not fully 
j=0 j0=0 

specified. The problem of finding an upper bound for a given value of ρe reduces 

to the same problem solved in Web Appendix G.3. 

Web Appendix H Demonstration of program use 

More information can be found in the user’s manual at http://www.hsph. 

harvard.edu/faculty/spiegelman/optitxs.html. 

In this example, we compute the power of a study with 31 participants and 14 post-

baseline measures, assuming CS covariance structure of the response, to detect a 10 
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L/min decrease in PEF associated with vaccuuming. We use model (2.3), assuming 

CMD, no effect of time and assume that interest is in the within-subject effect of 

exposure. This example is based on the dataset used in section 4. 

> long.power() 

* By just pressing <Enter> after each question, the default value, 
shown between square brackets, will be entered. 

* Press <Esc> to quit 

Enter the total sample size (N) [100]: 31 

Enter the number of post-baseline measures (r) [1]: 14 

Enter the time between repeated measures (s) [1]: 1 

Is the exposure time-invariant (1) or time-varying (2) [1]? 2 

Do you assume that the exposure prevalence is constant over time 
(1), that it changes linearly with time (2), or you want to enter 
the prevalence at each time point(3) [1]? 1 

Enter the mean exposure prevalence (0<pe<1) [0.5]: .37 

Enter the intraclass correlation of exposure (-0.066<rho.e<1) 
[0.5]: .13 

Constant mean difference (1) or Linearly divergent difference (2) 
[1]: 1 

Which model are you basing your calculations on: 
(1) Model without time. No separation of between- and within-

subject effects 
(2) Model without time. Within-subject contrast only 
(3) Model with time. No separation of between- and within-subject 

effects 
(4) Model with time. Within-subject contrast only 
Model [1]: 2 

Will you specify the alternative hypothesis on the absolute (beta 
coefficient) scale (1) or the relative (percent) scale (2) [1]? 1 

Enter the value of the coefficient of interest in your model, i.e. 
the difference between exposed and unexposed periods (beta) 
[0.1]: 10 

Which covariance matrix are you assuming: compound symmetry (1), 
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damped exponential (2) or random slopes (3) [1]? 1 

Enter the residual variance of the response given the assumed 
model covariates (sigma2) [1]: 4570 

Enter the correlation between two measures of the same subject 
(0<rho<1) [0.8]: .88 

Power = 0.9796308 

Do you want to continue using the program (y/n) [y]? n 
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