How to run a longitudinal GEE model with very large datasets in a reasonable amount of CPU time

Ellen Hertzmark and Donna Spiegelman

August 23, 2012

Abstract

This document contains instructions on how to run mixed (repeated measures) models for longitudinal data using a whole Channing cohort.

Keywords: SAS, mixed models, repeated measures

1 Motivation

Until now, people interested in longitudinal analysis with continuous outcomes have been sampling their data to make them runnable in PROC MIXED. This is NOT NECESSARY. In fact, with a bit of tweaking, PROC MIXED runs quite efficiently, even with a very large data set and a large number of repeated measures.

2 Setting up the data

Suppose you have the typical Channing dataset, with a record for each person-questionnaire cycle. It is already sorted by subject and time period.

If you have another type of dataset, you must sort it by subject and the index for the repeated measures.

If the data are sorted by the subject id, there is no need to make the subject a class variable. This saves a lot of memory when you

run the PROC MIXED.

Furthermore, in the example below we specify DDFM=BW (degrees of freedom method $=$ Between-Within), which also makes things run faster.

Note that in the example below, where BMI is modeled in relation to protein intake, 49357 observations are deleted because of missing data (17109 with missing BMI or diet data in period 1, 17624 missing both in period 2, and 14624 missing both in period 3). Even though data are missing, it is important to keep all observations from subjects who have any data in the dataset, if the covariance structure is different at or between different times, such as when the working variance-covariance structure is unstructured (TYPE=UN), because they are needed to keep the place of each observation within the subject, so that the $(1,2)$ place in the covariance matrix will always be the relation between periods 1 and 2, and never between 1 and 3 (if 2 is missing) or between 2 and 3 (if 1 is missing).

We recommend using the empirical option to avoid requiring multivariate normality for valid inference.

3 Examples

Here is an example of models for the continuous outcome BMI with 3 time periods.

3.1 Random intercept and random slope for one predictor

First we specify a covariance with a random intercept and a random slope for timepd. The partial .saslog is shown.

```
1 title1 '/udd/stleh/helpme/yli/mixedmod.sas';
2
3 filename indat '/proj/nhdbxs/nhdbx0v/NHS2/formixed.data';
4 options fullstimer nocenter ps=78 ls=130 formdlim='[' ;
/* the option FULLSTIMER allows us to know particulars about
```

```
how much memory a step used */
```

9 data rs;
10
11
12

13
26
27
28
29
30
31
infile indat;
run;
run;
input id $1-6$ bmi 8-18 aprot91a 20-25 timepd 27 ;
proc sort data=rs; by id; run;
title2 'random intercept, and slope for timepd';
proc mixed data=rs;
model bmi=aprot91a timepd/s ddfm=bw;
random intercept timepd/type=un subject=id;

NOTE: 49357 observations are not included because of missing values.
NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 1-2.
NOTE: PROCEDURE MIXED used (Total process time):
real time 20.18 seconds
user cpu time 14.98 seconds
system cpu time $\quad 3.84$ seconds
Memory 8233k
Page Faults 210
Page Reclaims 0
Page Swaps 0
Voluntary Context Switches 1116
Involuntary Context Switches 799
Block Input Operations 230
Block Output Operations 21403

So the first model, with one random slope, used about 19 seconds of (user+system) cpu and about 8 megabytes of memory. Here is the output.
/udd/stleh/helpme/yli/mixedmod.sas
random intercept, and slope for timepd

The Mixed Procedure

Model Information

Data Set	WORK.RS
Dependent Variable	bmi
Covariance Structure	Unstructured
Subject Effect	id
Estimation Method	ML
Residual Variance Method	Profile
Fixed Effects SE Method	Empirical
Degrees of Freedom Method	Between-Within

Dimensions

Covariance Parameters 4
Columns in X 3
Columns in Z Per Subject 2
Subjects84073
Max Obs Per Subject 3
Number of Observations
Number of Observations Read 252219
Number of Observations Used 202862
Number of Observations Not Used 49357
Iteration History
Iteration Evaluations -2 Log Like Criterion
0 $1 \quad 1303435.3381153$

The Mixed Procedure

Solution for Fixed Effects

Effect	Estimate	Standard Error	DF	t Value	Pr $>\|\mathrm{t}\|$
Intercept	21.5501	0.08191	82E3	263.10	$<.0001$
aprot91a	0.05662	0.001273	82E3	44.47	$<.0001$
timepd	0.5905	0.005225	12 E 4	113.02	$<.0001$

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr $>$ F
aprot91a	1	$82 E 3$	1977.40	$<.0001$
timepd	1	$12 E 4$	12773.9	$<.0001$

3.2 Random intercepts and slopes for two predictors

Now we specify a covariance with a random intercept and random slopes for timepd and protein intake (aprot91a).

32
33
34
35
36
37
title2 'random intercept, random slopes for timepd and aprot91a';
proc mixed data=rs method=ml empirical;
model bmi=aprot91a timepd/s ddfm=bw;
random intercept aprot91a timepd/type=un subject=id;
run;

NOTE: 49357 observations are not included because of missing values.
NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 3-4.

```
NOTE: PROCEDURE MIXED used (Total process time):
real time 27.25 seconds
user cpu time 22.51 seconds
system cpu time 3.69 seconds
Memory 10283k
Page Faults 0
Page Reclaims 0
Page Swaps 0
Voluntary Context Switches 1074
Involuntary Context Switches 1081
Block Input Operations 0
Block Output Operations 19391
```

This model, with 2 random slopes, used about 26 seconds of (user+system) cpu and about 10 megabytes of memory. The output is

```
/udd/stleh/helpme/yli/mixedmod.sas
12:14 Wednesday, August 16, 2006 3
random intercept, random slopes for timepd and aprot91a
The Mixed Procedure
```


Model Information

Data Set
WORK.RS
Dependent Variable
Covariance Structure
Subject Effect
Estimation Method
Residual Variance Method
Fixed Effects SE Method
Degrees of Freedom Method
bmi
Unstructured
id
ML
Profile
Empirical
Between-Within

Dimensions

Covariance Parameters 7
Columns in X 3
Columns in Z Per Subject 3
Subjects
84073


```
-2 Log Likelihood 1048610
AIC (smaller is better) 1048630
AICC (smaller is better) 1048630
BIC (smaller is better) 1048723
    Null Model Likelihood Ratio Test
    DF Chi-Square Pr > ChiSq
    6 254825.33 <.0001
```



```
/udd/stleh/helpme/yli/mixedmod.sas
12:14 Wednesday, August 16, 20064 random intercept, random slopes for timepd and aprot91a
The Mixed Procedure
Solution for Fixed Effects
\begin{tabular}{lrrrrr} 
Effect & Estimate & \begin{tabular}{r} 
Standard \\
Error
\end{tabular} & DF & t Value & \(\operatorname{Pr}>|\mathrm{t}|\) \\
& & & & & \\
Intercept & 21.6098 & 0.08011 & 82 E 3 & 269.75 & \(<.0001\) \\
aprot91a & 0.05572 & 0.001244 & 82 E 3 & 44.80 & \(<.0001\) \\
timepd & 0.5905 & 0.005222 & 12 E 4 & 113.07 & \(<.0001\)
\end{tabular}
Type 3 Tests of Fixed Effects
\begin{tabular}{lrrrr} 
& Num & Den \\
Effect & DF & DF & F Value & Pr \(>\) F \\
& & & & \\
aprot91a & 1 & \(82 E 3\) & 2007.12 & \(<.0001\) \\
timepd & 1 & \(12 E 4\) & 12785.5 & \(<.0001\)
\end{tabular}
```


4 Credits

Written by Donna Spiegelman and Ellen Hertzmark for the Channing Lab. Questions and comments may be directed to Ellen Hertzmark, stleh@channing. harvard.edu, (617) 432-4597.

