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Abstract

A new method for power and sample size calculations for studies of gene-environment in-
teractions of a binary genotype and ordinal exposure is proposed, and compared to previ-
ous methods, including those of Foppa and Spiegelman (1997), Lubin and Gail (1990) and
Greenland (1983). These methods differ in the assumptions that are made about the values
of the main effects of exposure and genotype under the null and alternative hypotheses. In
the new method, the null values are set to the values obtained or expected from data not
mutually adjusted for gene and environmental effects, and the alternative values of the param-
eters are solved for as a function of the other design parameters specified. This procedure for
fixing assumptions about these nuisance parameters most accurately utilizes the information
available at the planning stage of such studies. In addition, the new method gives smaller

sample sizes and higher power in some realistic examples. A fully-documented, user-friendly
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program implementing the new method can be downloaded from the first author’s web-site,

http://www.hsph.harvard.edu/faculty/spiegelman/ge_trend.html.

1 Introduction

With the mapping of the human genome, the ability to study the possible interaction of genetic and
environmental risk factors for disease becomes more important. A recent search of the Pub Med web
site, at the National Library of Medicine for the terms “(gene AND environment AND interaction)
OR 7gene-environment interaction OR gene-gene interaction” published between 1995-2001 listed
over 1532 articles. When the gene-environment interaction is the parameter of interest, power and
sample size calculations based on main effects only can lead to overestimation of the power and
underestimation of the required sample size.

A recent paper by Garcia-Closas & Lubin (1) compare the power and sample size calculations
for case-control studies of gene-environment interactions with a binary genotype and an ordinal
exposure given by two different methods. In this paper, they showed by several examples that the
method of Foppa & Spiegelman (2) underestimated the sample size for detecting a gene-environment
interaction. In this paper, we wish to investigate the extent to which this phenomena is true more
generally. In fact, we will show that there are regions of the design space that quite reasonably
could occur in practice in which Garcia-Closas & Lubin’s claim is reversed, and the alternative
method of Lubin & Gail (3) considered by Garcia-Closas & Lubin gives a smaller sample size. In
addition, we present a new method that eases some of the restrictions that were placed on the Foppa
& Spiegelman approach for calculating power and sample size, and more appropriately utilizes the
information available when such calculations are made than perhaps has been done by previously
proposed methods.

In section 2, we will review the approaches used by Lubin & Gail and Foppa & Spiegelman for

power and sample size calculations. We will also present the new method for these same calculations.



In section 3, we will present a comparison of the various methods similar to that given in Garcia-

Closas & Lubin. In section 4, a summary and recommendations are given.

2 Methods

2.1 Notation and assumptions

Assume D and G are binary indicators of disease status and the genotype. As in Foppa & Spiegelman
(2), let E denote ordinal exposure levels 0,1,...,q — 1, for some ¢ > 2, where ¢ — 1 is the highest
exposure level. We assume the log odds ratio of disease to be a linear function of the ordinal scores for
exposure. That is, the log odds ratio comparing adjacent exposure levels is assumed to be constant
for those with the genotype, OR(E|G = 1) and for those without the genotype OR(E|G = 0).

Denote the top-to-bottom quantile exposure effect in those without the genotype as OR*(E|G=0)

OR(E|G =1)
OR(E|G =0)’

and let the top-to-bottom odds ratio for the gene-environment interaction to be §*® = §9=1. These

= OR(E|G=0)?"1. Let # denote the gene-environment interaction effect, where § =

definitions imply the prospective logistic model for the case-control study

logit [P(D = 1|E, G)] = Bo + BgG + BE + B EG, 1)

where 8, = log[OR(G|E = 0)], B, = log [OR(E|G = 0)], and B, = log(8).

We are interested in finding the minimum sample size, N, in a case-control study for which the
hypothesis Hy : .y = 0 versus the test of H4 : 8., # 0 has power ¢, using the power function
Y(N, ﬂg‘;), where 3y, B, and 3. are nuisance parameters and 87 is the value of 3, under H,. The
four methods that we consider in this paper differ in the manner in which they handle the nuisance

parameters in calculating the power functions.



2.2 Foppa and Spiegelman

Foppa & Spiegelman (2), hereafter denoted FS, assumed that the power function (N, Bg;) has the

following form

(2)
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where ® is the cumulative standard normal function, 2,/ is the value of a standard normal variable,
Z, such that P(Z > z) = 1 — a/2, a is the size of the test, and 0% and o4y are the asymptotic
standard errors of the estimates of B, under Hy and Ha, respectively. For information on how
the standard errors are calculated, we refer the reader to the Appendix of Foppa and Spiegelman
(2). In calculating the standard errors, Foppa and Spiegelman require that the analyst provides
the prevalence of the variant genotype in the study base which produced the cases, which can be
estimated from the controls if the disease is rare or if incidence density sampling (4, p. 94, 99) was
used to obtain the controls. These authors assume that the nuisance parameters 3. and 3, have the
same values under the null and alternative hypotheses and are known or have been obtained from a
prior study. The null and alternative values of By which preserves the case-control matching ratio,

C, is then solved for. In particular, as given by FS, the intercept term, fy, is the solution of

8 1 1
e = — ’ (3)
C Ee’g eBogtBeetBeses P(E =¢,G = g|d = 0)

where ., = 0 under the null hypothesis, and P(E = e, G = g | d = 0) is the joint prevalence of e
and ¢ in the population from which the cases will arise.

To summarize, the required inputs for implementing the FS method are:

1. The distribution of gene prevalence and exposure in the population from which the cases will
arise. Under the common assumption that the distribution of genotype and exposure are
independent in the population from which the cases will arise, when the exposure is a quantile,

then only then number of quantiles and the marginal prevalance of the genotype is needed.



2. The control-case ratio, C.

3. The ratio of top-to-bottom quantile odds ratios, 8%, for gene-environment interaction under

the alternative hypothesis.
4. The assumed odds ratio for genotype in the lowest exposure level, OR(G|E = 0).

5. The top-to-bottom quantile odds ratio for exposure, OR!*(E|G = 0) in the reference genotype

level.

Greenland (6) and Smith and Day (7) discussed a variant of the FS method, which we will call
the Wald method, where the null variance term o2, is replaced by the alternative variance aé It

giving the power function

A _ nA
bw(N, ALY =1- @ (M) —1-3 (zm - 55&) (4)
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The Wald method requires similar inputs as the FS method. However, the top-to- bottom quan-
tile odds ratio for exposure, OR(E|G = 0), is taken to be the value assumed under the alternative,
H 4, and no assumption is needed at all about the value of this parameter under Hy. Similarly,
the value input for OR(E|G = 0) is taken to be the value assumed under Hy4, with no assumption
needed for the value of this parameter under Hy. Since the null variance of gt is likely to be smaller
than the variance under the alternative, we might generally expect for the FS method to give smaller
sample sizes for the same inputs.

Although the software implementation of the FS method assumes that P(E,G|D = 0) =
P(E|D = 0)P(G|D = 0), in the appendix of FS the condition of independence of the gene preva-
lence and exposure is not required. In practice, rarely will there be good prior knowledge of the

joint distribution of E and G, so this additional generalization has little practical importance.



2.3 Lubin and Gail

Lubin and Gail (3), hereafter denoted LG, base their power function on the score statistic. Since the
score statistic is asymptotically equivalent to the Wald statistic (9), given sufficient sample size this
in itself should not be an important difference between the FS and LG methods. All other things

being equal, this could however account for small differences between the two approaches. Then,

Za/20y — Er, (U )) , 5)
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where U is the score function of the log-likelihood based upon model (1), that is, the vector
of first derivatives of the log-likelihood of the case-control study with respect to the parameters
(Bo, Bes Bgy Beg)s Er, (X) is the expectation of some statistic, say X, under the assumption that the
data were generated under the alternative. Lubin and Gail require that the values of By, 8. and S,
be provided under the alternative. Then, 3§ is obtained by solving an equation similar to (3).

The values of By, B, and B, under the null hypothesis are determined by solving the equation
Eu,(U) = 0 for B, By, and B, when S, is set to 0. The expected values of the 2 x 2 x ¢ table
under H 4 are calculated, and the maximum likelihood estimates that would be obtained if the mis-
specified model assuming B, = 0 were fit to these pseudo-data are then computed. LG also request
from the user the baseline incidence rate for the outcome in the study base, which is often unknown,
and, if known, typically varies over time and with age. Under the rare disease assumption, or under
incidence-density sampling of controls (4,p. 94, 99), the baseline incidence rate disappears from the
expression used to calculate the exposure distribution among cases and controls (approximately so,
under the rare disease assumption).

To summarize, the input requirements for use of the LG method are the same as items 1-3 of

the FS method, but items 4 and 5 are a bit different:

4. The assumed odds ratio for genotype in the lowest exposure level, OR(G|E = 0), under Hy4.



5. The top-to-bottom quantile odds ratio for exposure, OR! (E|G = 0), in the reference genotype

level, under H 4.

2.4 Spiegelman and Logan

We propose a new method for power and sample size calculations, denoted SL, that follows the same
general approach as the FS method, except we alter how the assumptions about 3. and 8, under H4
are framed. Before conducting the proposed study where cases and controls are to be genotyped,
information about values of the marginal odds ratios OR(E) and OR(G) are available. Under
the null and when E and G are independent or approximately so, these marginal odds ratios are
approximately equal to the null values, i.e. under Hy, when Corr(E,G) ~ 0, OR(E) ~ OR(E|G = 0)
and OR(G) = OR(G|E = 0). These relations do not hold under the alternative. That is, under Hy,
OR(E)#0OR(E| G=0) and OR(G)%0R(G| E=0).

This new method exploits the information typically available before a case-control study of a
gene-environment interaction is conducted in a manner which we believe to be most appropriate.
Usually, values for these marginal quantities have been published previously and, in addition, pilot
data may be available for OR(E). Much less is known about the corresponding values that these
parameters might take on under the alternative, even when P(G, E) = P(G)P(E). Hence, it makes
sense to specify a reasonable range of values that these parameters are likely to fall within, which
could but not necessarily overlap the published marginal values.

With these considerations in mind, the input requirements for use of the SL method are the same
as those for the FS method, except that items 4 and 5 of the FS method are replaced with new

items 4-6 given below:
4. The odds ratio for genotype in the lowest exposure level, OR(G|E = 0), assumed under Hy.
5. An interval for OR®(E|G = 0) in which it is assumed that this parameter will lie under H,.

6. An interval for OR(G|E = 0) in which it is assumed that this parameter will lie under Hy4.



The SL method uses the power function given in equation (2). From equation (3), it can be
shown that o is a function of f., B, so that for fixed f.4, equation (2) can be assumed to be
a function of N, 8. and B,. For a fixed sample size, N, we calculate the power by first finding
the smallest value of equation (2) when 3. and §, are restricted to be in the intervals provided by
requirements 5 and 6. That is, equation (2) is minimized with respect to 3. and j3,, within the
rectangular region formed by the Cartesian product of the intervals specified by the user under H 4.
This is a standard non-linear optimization problem, and the publicly available DMNGB subroutine,
obtained from http://www.netlib.org, which applies a quasi-Newton method (for example, see
5) was used to solve it. In addition to the smallest possible power, the program also calculates the
largest possible power for the given sample size over the allowable intervals for 3, and f..

To find the smallest sample size so that the power of testing the above hypothesis is at least
the desired power for any pair of 3, and S, in the provided intervals, we use the derivation of the
asymptotic standard errors of (8o, 8y, Be, Beg) from the appendix of Foppa & Spiegelman (2), and
note that the expected cell counts under the null and alternative hypothesis can be expressed as
a multiple of the number of cases, m;. Hence, we can rewrite the standard errors in Foppa and
Spiegelman’s equation (2) in terms of a new standard error and the square root of the number of
cases, i.e. under Hy, 0%y = 6% /\/M1, where 62 is the (4,4)-entry of the inverse of the expected
information matrix of the log-likelihood of the data. Using the same notation as in the appendix of

Foppa & Spiegelman (2), the the (u,v)-entry of the expected information matrix is

X T ' , exp (B, 2;)
E <76,Buaﬂv Ho) = ]:ZI ZjuZjv % [E(mo,;) + E(m1,;{Ho)] x [ +eXp(,BIEOZj)]2’



where we now have simplified [E(mg_ ;) + E(m1 ;| Ho)] to

exp(,BIEOZj) X PI‘(E = ZjQ,G = Zj3|D = 0)
ii? exp(,BITfozk) X Pr(E = 22, G = zp3|D = 0)

E(mo,;) + E(m1,;|Ho) = m

+ Pr(E = 2;3|D = 0) x Pr(G = z;2|D =0) x C|.

We then solve equation (2) for m; to obtain

A
eg

z 25'0 —21,1/,5'14 ?
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where 21 _y is the value of a standard normal variable, z, such that P(Z > z) =1—-(1—1¢) = 4. To
find the minimum sample size required to achieve a specified power, ¥, we then maximize the right
hand side of (6) with respect to 3, and ., using the quasi-Newton method (ref 5) implemented by
the subroutine DMNGB publicly available from from http://www.netlib.org. A sample of size
N =m;(1 + C) then gives power of at least ¢ for any value of 3, and [, in the specified intervals.

Given OR(G), OR(E), ROR!?, P(G), and P(E), under the assumption of independence of G
and E, and all levels of P(G, E) otherwise, we can solve equations (A.1) and (A.2) of the Appendix
explicitly for OR(G|E = 0) and OR(E|G = 0) under the alternative. Further details on how this
is done are given in the Appendix. Tables 1 and 2 gives these values when ¢ = 2 for P(E) = 0.05,
P(G) = 0.25 and P(E = 1|G = 1)/P(E = 1|G = 0) = 1 and 1.5, indicating no and a modest
positive association between G and E, respectively. Recall that, as always, even when G is not an
effect modifier of the association of E with the outcome, it will be a confounder as long as G and E
are associated in the controls. This is why the marginal odds ratios are not equal to the conditional
odds ratios even when there is no interaction between E and G, when E and G are associated. With
P(E)=0.05, P(G)=0.5, no association of G with E, an ROR of 4 and marginal odds ratios for
genotype and exposure of 2 and 1.5, respectively, the conditional values of the two odds ratio under

H, are 1.8 and 0.7 (Table 1). When P(E) increases to 0.5 and P(G) to 0.5, the two conditional



odds ratios under Hy4 for genotype and exposure, respectively, are 0.61 and 0.93. Depending on a
complicated, non-linear relationship between all these parameters, when there is a gene-environment
interaction, the conditional odds ratios for E and G can be in the opposite direction of the marginal
ones. Tables 1 and 2 demonstrate how difficult it is to ’guess’ what the conditional odds ratios under
the alternative might be, given the information about the marginal odds ratios, which is typically
all that is available at the planning phase of such a study. Our new computer program allows the
user to explore the likely values of OR!*(E|G = 0) and OR(G|E = 0) under H,, so a realistic
range of these can be specified as inputs for the power and sample size calculations to be conducted

subsequently.

3 Comparison

In this section, we compare the methods used for calculating the required sample size needed for
testing the null hypothesis of no gene-environment interaction. As can be seen in table 3, the required
inputs for the various methods are similar except for the required information about OR(G|E = 0)
and OR(E|G = 0). In the FS and SL methods, the values of these parameters under Hy are needed,
while for the LG method, the values under H4 are needed. In addition to the values under the null,
SL requires the user to provide a range of possible values of OR!(E|G = 0) and OR(G|E = 0) to
be used under H,4. In the FS method, the null values are assumed equal to their corresponding
values under the alternative. Because in binomial data the variance of the model parameters depend
on their assumed values, these distinctions have some importance. In contrast, when power or
sample size for a test for gene-environment interaction for a continuous outcome in a linear model
is considered, as in the recent paper by Luan et al. (8) this issue is not relevant.

For all the required sample size comparisons presented in this paper, we fixed the desired power
at 80%, a at 0.05, and assumed that G and E were independent. First, we expand upon table 2 of

Garcia—Closas & Lubin. In that comparison, OR(G|E = 0) = 1.5, C = 1.0, P(G =1|D =0) = 0.5,
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Table 3: Required inputs for the various methods for calculating sample size. Y=required, N=not
required, Hy = used under null hypothesis, and H 4= used under alternative hypothesis.

Methods
Required Input FS Wald LG SL
Desired power, v Y Y Y Y
Type I error, « Y Y Y Y
Control-case ratio, C Y Y Y Y
Number of quantiles for E, ¢ Y Y Y Y
Genotype prevalence Y Y Y Y
ot Y Y Y Y
OR(G|E =0) Hy=H, Hy Hgx Hy,
range under Hy4
ORY(E|G = 0) Hy=H, Hy Hgx Hy,
range under Hy4

q = 5, and G is assumed independent of E in the controls. We add the Wald and SL methods
to this table, and for the SL method we used a suitable range of values for OR(G|E = 0) and
ORY(E|G = 0) under the alternative H,, as suggested by methods given in the previous section.
The results for this comparison are presented in table 4. In these examples, the new method gave
sample sizes smaller than those given by all the other methods. This appears to be because the
range of values assumed under H4 for OR(G|E = 0) and ORY(E|G = 0) often seem to produce
in expectation a set of 2xq tables which are more balanced and thus yield parameter estimates
with smaller variances. For example, consider the last row of Table 4, where §?* = 6. In this case,
under Hy, OR(G|E = 0) was 1.5 under SL and 5.2 under LG, and OR!(E|G = 0) was 6 under
SL and 18.4 under LG. Clearly, these extreme odds ratios will lead to highly unbalanced tables in
expectation under Hy and a large null variance for the model parameters. Under, H 4, the situation
is somewhat similar. The alternative value for OR(G|E = 0) is 1.5 for LG and 0.41 for SL, and
the alternative value for OR! (E|G = 0) is 6 for LG and 3.3 for SL. Inspection of the expected cell
counts for these four sets of tables (not shown) confirms these observations, and it is clear that, at
least in this example, the tables implied by the LG method are more unbalanced than those implied

by the SL method.
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The Wald method gave results very similar to the LG method.

Table 4: Comparison of sample size calculations using the methods of Foppa & Spiegelman (FS),
Wald, Spiegelman & Logan (SL), and Lubin & Gail (LG) to achieve 80% power when OR(G|E =
0)=15,C=1,and P(G=1) =0.5.

6% ORP(E|G=0) FS Wald LG SL

OR®A(E|G =0)* ORA(G|E = 0)*
15 15 6386 6580 6580 6395 1.2(1.0,1.5) 1.2(1.0,1.5)
3.0 1.5 906 1020 1020 885  0.89(0.75,1.2) 0.82(0.7,1.1)
6.0 1.5 366 472 472 345  0.72(0.5, 1.0) 0.54(0.25,0.75)
1.5 3.0 6858 7162 7172 6835  2.4(1.5,2.75) 1.2(0.8,1.5)
3.0 3.0 986 1152 1158 945  1.8(1.25,2.25) 0.75(0.5,1.0)
6.0 3.0 404 554 561 365 1.6(1.0,2.0) 0.46(0.25,0.75)
1.5 6.0 7798 8248 8267 7755 4.8(3.5,5.5) 1.1(0.75, 1.5)
3.0 6.0 1134 1374 1385 1075 3.7(3.0,4.5) 0.69(0.4, 0.9)
6.0 6.0 470 684 696 415 3.3(2.5,4.0) 0.41(0.2,0.6)

* Value of parameter fixed under the assumption of independence of E and G, and interval given to produce
sample sizes shown for the SL. method.

In a second comparison, we explore sample sizes given by the FS and LG methods over a range of
values for all the required parameters for these methods to investigate more generally the assertion
made by Garcia-Clossas and Lubin that the FS method leads to an underestimation of the sample
size, unless the gene-environment interaction is small or if the odds ratio for the genetic and exposure
effects are small (1, p. 692) . We compared the relative difference in the sample size obtained by
inverting the power functions given by equations (2) and (5) over a grid which allowed the exposure
to have between two and five quantiles, P(G = 1) = 0.25, OR(G|E = 0) = 2.0, and C = 2.0. The
odds ratio for OR(E|G = 0) took on values 2.0, 2.5, and 3.0, while §%° took on values between 0.1
and 4.0 with increments of size 0.1 (removing the case where §?* = 1.0). The differences between the
two methods generally followed the conclusions of Garcfa-Clossas and Lubin, but not consistently
(figure 1). We have graphed the relative difference between the FS and LG methods for the same
parameters when % varies between 0.1 and 4.0. As can be seen, for values of *° between 1 and 3 the

FS method gives a greater required sample size, in contradiction to Garcia-Closas and Lubin’s claim,
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Figure 1: Relative differences in sample size given by the FS and LG methods verses % when
OR(E|G =0)=2.0,OR(G|E=0)=1.5,¢g=5,C=2,and P(G=1) =0.25.

percent difference = 100*(fs-1g)/fs
o
I

and for values of 8% outside of this range, the LG gives a smaller required sample size, consistent
with Garcia-Closas and Lubin’s claim. However, in these cases the difference in not large, either

way.

4 Discussion

The new method (SL) resembles most closely the situation encountered in practice at the planning
stage of a study of a gene-environment interaction. The investigator is most likely to have greatest
knowledge about the null values to be assumed for OR!*(E|G) and OR(G|E), and least likely to
have knowledge about the conditional values of these parameters under the alternative. In realistic

examples, it appears that this new method gives sample sizes smaller than all of the other methods
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considered. Given the importance of these power and sample size calculations in current epidemi-
ologic research, this new method is likely to be widely used. There is, of course, no limit of this
methodology to studies of gene-environment interactions. Studies of interaction between any binary
and ordinal variable can be planned using the methodology presented in this paper.

A fully documented, user-friendly program implementing the new method can be downloaded

from the first author’s web-site http://www.hsph.harvard.edu/faculty/spiegelman/ge_trend.html.
p p y/spleg g
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Appendix: Calculation of OR?(E|G = 0) and OR(G|E = 0)

under H4

Suppose that disease incidence in the study base which produced the cases follows the proportional

hazards model given by P(D = 1|E, G,t,T > t) = ho(t)ePe P+Ps +B:a EG where hg(t) is the baseline

incidence rate, and that the probability of being selected as a control at the time, ¢, that a case

occurs is given by f(t), then the expected number of cases and controls with exposure level E and

genotype G are given by h(t)efe E+8s +8es EG) p(E @) and f(t) P(E,Q), respectively. To find the

marginal odds ratio for E, we need to collapse the cells over the two levels of G, from the 2 x 2 x ¢

given in table 5, for the case when ¢ = 2, to obtain the 2 x 2 table given in table 6.

Then the expected cell counts in the collapsed table are proportional to a fixed constant times

15



Table 5: Layout for a Case-Control study of a gene-environment interaction with a binary exposure
(¢=2)

G=0 G=1

E E
D 1 o0 D 1 o0
1 ap bo 1 ap b1
0 ¢ dy 0 ca d

Table 6: 2 x 2 table for E and D when g = 2, collapsed over levels of G.

E
D 1 0
1 a. b,
0 ¢ d.

the following expressions:

Qe

Ce

iP(D =1E=1,G =g)P(E =1,G = g) = hy(t)e’s [P(E=1,G = 0) + e’ PsP(E =1,G =0)],
9=0

iP(D =1E=0,G=g)P(E=0,G=g) =ho(t) [P(E=0,G=0)+e*P(E=0,G=1)],

9=0

iP(D =0E=1,G=¢g)P(E=1,G=9)=ft)[P(E=1,G=0)+P(E=1,G=1)],

9=0

iP(D:0|E:0,G:g)P(E:0,G:g) =f(t)[P(E=0,G =0)+ P(E=0,G =1)].

9=0

Then the marginal odds ratio for E, OR(E) = (a./ce)/(be/de), can be expressed as

OR(E) = e« (A1)

To calculate the marginal odds ratio for G, OR(G), we need to sum over the individual cells

indexed by the ¢ levels of E. Using the same notation as in the above 2 x 2 table with E replaced
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by G, yields the following four expected cell counts:

q—1 qg—1

ag=Y P(D=1E=¢,G=1)P(E=¢,G=1)=ho(t)e? Y e Ps *P(E=¢,G =1),
e=0 e=0
qg—1 g—1

d
g

P(D=1|E=e,G=0)P(E=¢,G=0)=ho(t) Y P(E=e,G=0)=h(t)P(G=0),

Qo
!
= o

qg—1

P(D=0E=e,G=1)P(E=¢,G=1)=f({)y P(E=¢,G=1) = f(t)P(G = 1),

i
g

Q@
!
= o
@
Il
= O

S
<Q
I

P(D=0E=¢,G=0)P(E=¢,G=0)=f(t)Y PE=¢,G=0)=f(t)P(G=0).

a
Il
<
a
Il
<}

Thus, the marginal odds ratio for G is OR(G) = (ag/cg)/(bg/d,) and can be simplified to

P(G =0) [LIZ) e ctPat P(E = e,G = 1)]

(A.2)
P(G=1) [Eg;g eB)P(E=¢, G = 0)]

If we assume that E and G are independent, so that P(E = e,G = g) = P(E = e)*pj*(1—pg)' ¥,
where p, = P(G = 1), then equations (A.1) and (A.2) can be further simplified to
5. (L—py) + e’ +oeap,
€ 5
(1 —pg) +€sp,

3, EZ;(I) eﬁe et+Beg € P(E — e)
S ieBee P(E =e)

)

OR(E) =

OR(G) =e

From these two equations, it is easy to see that under the null hypothesis when 3., = 0, the marginal
and conditional odds ratios are equivalent (the equations reduce to OR(E) = €< and OR(G) = €P).

For OR(E), OR(G), and B, fixed, the system of nonlinear equations (A.1) and (A.2), or their
simplifications under independence of E and G, equation (A.3), are solved using the MINPACK
(10) subroutine HYBRD1 which implements a modification of the Powell hybrid algorithm (11), for

OR(E|G = 0) = €% and OR(G|E = 0) = € to obtain the results of tables 1 and 2.
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